Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(4): 2322-2331, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651799

RESUMO

For a virus-like particle (VLP) to serve as a delivery platform, the VLP must be able to release its cargo in response to a trigger. Here, we use a chemical biology approach to destabilize a self-assembling capsid for a subsequent triggered disassembly. We redesigned the dimeric hepatitis B virus (HBV) capsid protein (Cp) with two differentially addressable cysteines, C150 for reversibly crosslinking the capsid and C124 to react with a destabilizing moiety. The resulting construct, Cp150-V124C, assembles into icosahedral, 120-dimer VLPs that spontaneously crosslink via the C-terminal C150, leaving C124 buried at a dimer-dimer interface. The VLP is driven into a metastable state when C124 is reacted with the bulky fluorophore, maleimidyl BoDIPY-FL. The resulting VLP is stable until exposed to modest, physiologically relevant concentrations of reducing agent. We observe dissociation with FRET relaxation of polarization, size exclusion chromatography, and resistive-pulse sensing. Dissociation is slow, minutes to hours, with a characteristic lag phase. Mathematical modeling based on the presence of a nucleation step predicts disassembly dynamics that are consistent with experimental observations. VLPs transfected into hepatoma cells show similar dissociation behavior. These results suggest a generalizable strategy for designing a VLP that can release its contents in an environmentally responsive reaction.


Assuntos
Capsídeo , Vacinas de Partículas Semelhantes a Vírus , Capsídeo/química , Proteínas do Capsídeo/química , Vírus da Hepatite B/química , Linhagem Celular , Vacinas de Partículas Semelhantes a Vírus/análise
2.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563815

RESUMO

Hepatitis B virus (HBV) core protein (Cp) can be found in the nucleus and cytoplasm of infected hepatocytes; however, it preferentially segregates to a specific compartment correlating with disease status. Regulation of this intracellular partitioning of Cp remains obscure. In this paper, we report that cellular compartments are filled and vacated by Cp in a time- and concentration-dependent manner in both transfections and infections. At early times after transfection, Cp, in a dimeric state, preferentially localizes to the nucleolus. Later, the nucleolar compartment is emptied and Cp progresses to being predominantly nuclear, with a large fraction of the protein in an assembled state. Nuclear localization is followed by cell-wide distribution, and then Cp becomes exclusively cytoplasmic. The same trend in Cp movement is seen during an infection. Putative nucleolar retention signals have been identified and appear to be structure dependent. Export of Cp from the nucleus involves the CRM1 exportin. Time-dependent flux can be recapitulated by modifying Cp concentration, suggesting transitions are regulated by reaching a threshold concentration.IMPORTANCE HBV is an endemic virus. More than 250 million people suffer from chronic HBV infection and about 800,000 die from HBV-associated disease each year. HBV is a pararetrovirus; in an infected cell, viral DNA in the nucleus is the template for viral RNA that is packaged in nascent viral capsids in the cytoplasm. Inside those capsids, while resident in cytoplasm, the linear viral RNA is reverse transcribed to form the circular double-stranded DNA (dsDNA) of the mature virus. The HBV core (or capsid) protein plays a role in almost every step of the viral life cycle. Here, we show the core protein appears to follow a programmed, sequential localization from cytoplasmic translation then into the nucleolus, to the nucleus, and back to the cytoplasm. Localization is primarily a function of time, core protein concentration, and assembly. This has important implications for our understanding of the mechanisms of antivirals that target HBV capsid assembly.


Assuntos
Nucléolo Celular/virologia , Núcleo Celular/virologia , Citoplasma/virologia , Vírus da Hepatite B/genética , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Proteínas Virais/fisiologia , Antivirais/farmacologia , Citoplasma/fisiologia , Citosol/virologia , DNA Viral/metabolismo , Vírus da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Proteínas Virais/genética , Montagem de Vírus , Replicação Viral
3.
Biomater Sci ; 8(19): 5489-5503, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32914796

RESUMO

The immunosuppressive tumor microenvironment enables cancer to resist immunotherapies. We have established that intratumoral administration of plant-derived Cowpea mosaic virus (CPMV) nanoparticles as an in situ vaccine overcomes the local immunosuppression and stimulates a potent anti-tumor response in several mouse cancer models and canine patients. CPMV does not infect mammalian cells but acts as a danger signal that leads to the recruitment and activation of innate and subsequently, adaptive immune cells. In the present study we addressed whether other icosahedral viruses or virus-like particles (VLPs) of plant, bacteriophage and mammalian origin can be similarly employed as intratumoral immunotherapy. Our results indicate that CPMV in situ vaccine outperforms Cowpea chlorotic mottle virus (CCMV), Physalis mosaic virus (PhMV), Sesbania mosaic virus (SeMV), bacteriophage Qß VLPs, or Hepatitis B virus capsids (HBVc). Furthermore, ex vivo and in vitro assays reveal unique features of CPMV that makes it an inherently stronger immune stimulant.


Assuntos
Vacinas Anticâncer , Comovirus , Nanopartículas , Neoplasias , Vírus , Animais , Cães , Humanos , Imunoterapia , Camundongos
4.
Curr Opin Virol ; 45: 43-50, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32777753

RESUMO

Viral structural proteins are emerging as effective targets for new antivirals. In a viral lifecycle, the capsid must assemble, disassemble, and respond to host proteins, all at the right time and place. These reactions work within a narrow range of conditions, making them susceptible to small molecule interference. In at least three specific viruses, this approach has had met with preliminary success. In rhinovirus and poliovirus, compounds like pleconaril bind capsid and block RNA release. Bevirimat binds to Gag protein in HIV, inhibiting maturation. In Hepatitis B virus, core protein allosteric modulators (CpAMs) promote spontaneous assembly of capsid protein leading to empty and aberrant particles. Despite the biological diversity between viruses and the chemical diversity between antiviral molecules, we observe common features in these antivirals' mechanisms of action. These approaches work by stabilizing protein-protein interactions.


Assuntos
Antivirais/farmacologia , Proteínas Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos , Capsídeo/química , Descoberta de Drogas/métodos , Vírus da Hepatite B/efeitos dos fármacos , Montagem de Vírus/efeitos dos fármacos
5.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043524

RESUMO

Hepadnaviruses are hepatotropic enveloped DNA viruses with an icosahedral capsid. Hepatitis B virus (HBV) causes chronic infection in an estimated 240 million people; woodchuck hepatitis virus (WHV), an HBV homologue, has been an important model system for drug development. The dimeric capsid protein (Cp) has multiple functions during the viral life cycle and thus has become an important target for a new generation of antivirals. Purified HBV and WHV Cp spontaneously assemble into 120-dimer capsids. Though they have 65% identity, WHV Cp has error-prone assembly with stronger protein-protein association. We have taken advantage of the differences in assemblies to investigate the basis of assembly regulation. We determined the structures of the WHV capsid to 4.5-Å resolution by cryo-electron microscopy (cryo-EM) and of the WHV Cp dimer to 2.9-Å resolution by crystallography and examined the biophysical properties of the dimer. We found, in dimer, that the subdomain that makes protein-protein interactions is partially disordered and rotated 21° from its position in capsid. This subdomain is susceptible to proteolysis, consistent with local disorder. WHV assembly shows similar susceptibility to HBV antiviral molecules, suggesting that HBV assembly follows similar transitions. These data show that there is an entropic cost for assembly that is compensated for by the energetic gain of burying hydrophobic interprotein contacts. We propose a series of stages in assembly that incorporate a disorder-to-order transition and structural shifts. We suggest that a cascade of structural changes may be a common mechanism for regulating high-fidelity capsid assembly in HBV and other viruses.IMPORTANCE Virus capsids assemble spontaneously with surprisingly high fidelity. This requires strict geometry and a narrow range of association energies for these protein-protein interactions. It was hypothesized that requiring subunits to undergo a conformational change to become assembly active could regulate assembly by creating an energetic barrier and attenuating association. We found that woodchuck hepatitis virus capsid protein undergoes structural transitions between its dimeric and its 120-dimer capsid states. It is likely that the closely related hepatitis B virus capsid protein undergoes similar structural changes, which has implications for drug design. Regulation of assembly by structural transition may be a common mechanism for many viruses.


Assuntos
Capsídeo/química , Vírus da Hepatite B da Marmota/química , Multimerização Proteica , Proteínas do Core Viral/química , Montagem de Vírus , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Entropia , Vírus da Hepatite B da Marmota/fisiologia , Vírus da Hepatite B da Marmota/ultraestrutura
6.
Biophys J ; 115(9): 1656-1665, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301514

RESUMO

Simian virus 40 (SV40) is a possible vehicle for targeted drug delivery systems because of its low immunogenicity, high infectivity, and high transfection efficiency. To use SV40 for biotechnology applications, more information is needed on its assembly process to efficiently incorporate foreign materials and to tune the mechanical properties of the structure. We use atomic force microscopy to determine the effect of double-stranded DNA packaging, buffer conditions, and incubation time on the morphology and strength of virus-like particles (VLPs) composed of SV40 VP1 pentamers. DNA-induced assembly results in a homogeneous population of native-like, ∼45 nm VLPs. In contrast, under high-ionic-strength conditions, the VP1 pentamers do not seem to interact consistently, resulting in a heterogeneous population of empty VLPs. The stiffness of both in-vitro-assembled empty and DNA-filled VLPs is comparable. Yet, the DNA increases the VLPs' resistance to large deformation forces by acting as a scaffold, holding the VP1 pentamers together. Both disulfide bridges and Ca2+, important in-vitro-assembly factors, affect the mechanical stability of the VLPs: the reducing agent DTT makes the VLPs less resistant to mechanical stress and prone to damage, whereas Ca2+-chelating EDTA induces a marked softening of the VLP. These results show that negatively charged polymers such as DNA can be used to generate homogeneous particles, thereby optimizing VLPs as vessels for drug delivery. Moreover, the storage buffer should be chosen such that VP1 interpentamer interactions are preserved.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , DNA/metabolismo , Fenômenos Mecânicos , Vírus 40 dos Símios , Fenômenos Biomecânicos , Microscopia de Força Atômica
7.
J Am Chem Soc ; 140(45): 15261-15269, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30375863

RESUMO

Heteroaryldihydropyrimidines (HAPs) are antiviral small molecules that enhance assembly of HBV core protein (Cp), lead to assembly of empty and defective particles, and suppress viral replication. These core protein allosteric modulators (CpAMs) bind to the pocket at the interface between two Cp dimers and strengthen interdimer interactions. To investigate the CpAM mechanism, we wanted to examine the cellular distributions of Cp and the CpAM itself. For this reason, we developed a fluorescently labeled CpAM, HAP-ALEX. In vitro, HAP-ALEX modulated assembly of purified Cp and at saturating concentrations induced formation of large structures. HAP-ALEX bound capsids and not dimers, making it a capsid-specific molecular tag. HAP-ALEX labeled HBV in transfected cells, with no detectable background with a HAP-insensitive Cp mutant. HAP-ALEX caused redistribution of Cp in a dose-dependent manner consistent with its 0.7 µM EC50, leading to formation of large puncta and an exclusively cytoplasmic distribution. HAP-ALEX colocalized with the redistributed Cp, but large puncta accumulated long before they appeared saturated with the fluorescent CpAM. CpAMs affect HBV assembly and localization; with a fluorescent CpAM both drug and target can be identified.


Assuntos
Antivirais/farmacologia , Corantes Fluorescentes/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Pirimidinas/farmacologia , Proteínas do Core Viral/antagonistas & inibidores , Antivirais/química , Corantes Fluorescentes/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirimidinas/química , Replicação Viral/efeitos dos fármacos
8.
ACS Chem Biol ; 13(8): 2114-2120, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29920071

RESUMO

The Hepatitis B Virus (HBV) core protein homodimers self-assemble to form an icosahedral capsid that packages the viral genome. Disassembly occurs in the nuclear basket to release the mature genome to the nucleus. Small molecules have been developed that bind to a pocket at the interdimer interface to accelerate assembly and strengthen interactions between subunits; these are under development as antiviral agents. Here, we explore the role of the dimer-dimer interface by mutating sites in the drug-binding pocket to cysteine and examining the effect of covalently linking small molecules to them. We find that ligands bound to the pocket may trigger capsid disassembly in a dose-dependent manner. This result indicates that, at least transiently, the pocket adopts a destabilizing conformation. We speculate that this pocket also plays a role in virus disassembly and genome release by binding ligands that are incompatible with virus stability, "unwanted guests." Investigating protein-protein interactions, especially large protein polymers, offers new and unique challenges. By using an engineered addressable thiol, we provide a means to examine the effects of modifying an interface without requiring drug-like properties for the ligand.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Montagem de Vírus , Proteínas do Capsídeo/química , Vírus da Hepatite B/química , Humanos , Modelos Moleculares , Multimerização Proteica
9.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491156

RESUMO

Cytidine deaminases inhibit replication of a broad range of DNA viruses by deaminating cytidines on single-stranded DNA (ssDNA) to generate uracil. While several lines of evidence have revealed hepatitis B virus (HBV) genome editing by deamination, it is still unclear which nucleic acid intermediate of HBV is modified. Hepatitis B virus has a relaxed circular double-stranded DNA (rcDNA) genome that is reverse transcribed within virus cores from a RNA template. The HBV genome also persists as covalently closed circular DNA (cccDNA) in the nucleus of an infected cell. In the present study, we found that in HBV-producing HepAD38 and HepG2.2.15 cell lines, endogenous cytidine deaminases edited 10 to 25% of HBV rcDNA genomes, asymmetrically with almost all mutations on the 5' half of the minus strand. This region corresponds to the last half of the minus strand to be protected by plus-strand synthesis. Within this half of the genome, the number of mutations peaks in the middle. Overexpressed APOBEC3A and APOBEC3G could be packaged in HBV capsids but did not change the amount or distribution of mutations. We found no deamination on pregenomic RNA (pgRNA), indicating that an intact genome is encapsidated and deaminated during or after reverse transcription. The deamination pattern suggests a model of rcDNA synthesis in which pgRNA and then newly synthesized minus-sense single-stranded DNA are protected from deaminase by interaction with the virus capsid; during plus-strand synthesis, when enough dsDNA has been synthesized to displace the remaining minus strand from the capsid surface, the single-stranded DNA becomes deaminase sensitive.IMPORTANCE Host-induced mutation of the HBV genome by APOBEC proteins may be a path to clearing the virus. We examined cytidine-to-thymidine mutations in the genomes of HBV particles grown in the presence or absence of overexpressed APOBEC proteins. We found that genomes were subjected to deamination activity during reverse transcription, which takes place within the virus capsid. These observations provide a direct insight into the mechanics of reverse transcription, suggesting that newly synthesized dsDNA displaces ssDNA from the capsid walls, making the ssDNA accessible to deaminase activity.


Assuntos
Desaminase APOBEC-3G/metabolismo , Citidina Desaminase/metabolismo , DNA Viral/metabolismo , Vírus da Hepatite B/genética , Proteínas/metabolismo , RNA Viral/metabolismo , Transcrição Reversa/genética , Capsídeo/metabolismo , Linhagem Celular Tumoral , Empacotamento do DNA/genética , DNA Circular/metabolismo , DNA Viral/genética , Desaminação/genética , Genoma Viral/genética , Células Hep G2 , Vírus da Hepatite B/enzimologia , Humanos , Mutação/genética , RNA Viral/genética
10.
Elife ; 72018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29377794

RESUMO

Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (<4 Å), we introduced a disulfide crosslink that rescued particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection.


Assuntos
Antivirais/metabolismo , Capsídeo/efeitos dos fármacos , Antígenos do Núcleo do Vírus da Hepatite B/química , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Montagem de Vírus/efeitos dos fármacos , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus da Hepatite B/ultraestrutura , Análise Espectral
11.
Protein Sci ; 26(11): 2170-2180, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795465

RESUMO

Hepatitis B virus (HBV) core protein is a model system for studying assembly and disassembly of icosahedral structures. Controlling disassembly will allow re-engineering the 120 subunit HBV capsid, making it a molecular breadboard. We examined removal of subunits from partially crosslinked capsids to form stable incomplete particles. To characterize incomplete capsids, we used two single molecule techniques, resistive-pulse sensing and charge detection mass spectrometry. We expected to find a binomial distribution of capsid fragments. Instead, we found a preponderance of 3 MDa complexes (90 subunits) and no fragments smaller than 3 MDa. We also found 90-mers in the disassembly of uncrosslinked HBV capsids. 90-mers seem to be a common pause point in disassembly reactions. Partly explaining this result, graph theory simulations have showed a threshold for capsid stability between 80 and 90 subunits. To test a molecular breadboard concept, we showed that missing subunits could be refilled resulting in chimeric, 120 subunit particles. This result may be a means of assembling unique capsids with functional decorations.


Assuntos
Capsídeo/ultraestrutura , Vírus da Hepatite B/ultraestrutura , Subunidades Proteicas/química , Proteínas do Core Viral/química , Compostos de Boro/química , Capsídeo/química , Simulação por Computador , Etilmaleimida/química , Corantes Fluorescentes/química , Vírus da Hepatite B/química , Espectrometria de Massas/métodos , Peso Molecular , Método de Monte Carlo , Multimerização Proteica , Cloreto de Sódio/química , Eletricidade Estática , Ureia/química
12.
Nat Microbiol ; 2: 17098, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28628133

RESUMO

Formation of the hepatitis B virus nucleocapsid is an essential step in the viral lifecycle, but its assembly is not fully understood. We report the discovery of sequence-specific interactions between the viral pre-genome and the hepatitis B core protein that play roles in defining the nucleocapsid assembly pathway. Using RNA SELEX and bioinformatics, we identified multiple regions in the pre-genomic RNA with high affinity for core protein dimers. These RNAs form stem-loops with a conserved loop motif that trigger sequence-specific assembly of virus-like particles (VLPs) at much higher fidelity and yield than in the absence of RNA. The RNA oligos do not interact with preformed RNA-free VLPs, so their effects must occur during particle assembly. Asymmetric cryo-electron microscopy reconstruction of the T = 4 VLPs assembled in the presence of one of the RNAs reveals a unique internal feature connected to the main core protein shell via lobes of density. Biophysical assays suggest that this is a complex involving several RNA oligos interacting with the C-terminal arginine-rich domains of core protein. These core protein-RNA contacts may play one or more roles in regulating the organization of the pre-genome during nucleocapsid assembly, facilitating subsequent reverse transcription and acting as a nucleation complex for nucleocapsid assembly.


Assuntos
Vírus da Hepatite B/fisiologia , Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Sítios de Ligação , Biologia Computacional , Ligação Proteica , Técnica de Seleção de Aptâmeros
13.
ACS Chem Biol ; 12(5): 1327-1334, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28323402

RESUMO

Simian virus 40 capsid protein (VP1) is a unique system for studying substrate-dependent assembly of a nanoparticle. Here, we investigate a simplest case of this system where 12 VP1 pentamers and a single polyanion, e.g., RNA, form a T = 1 particle. To test the roles of polyanion substrate length and structure during assembly, we characterized the assembly products with size exclusion chromatography, transmission electron microscopy, and single-particle resistive-pulse sensing. We found that 500 and 600 nt RNAs had the optimal length and structure for assembly of uniform T = 1 particles. Longer 800 nt RNA, shorter 300 nt RNA, and a linear 600 unit poly(styrene sulfonate) (PSS) polyelectrolyte produced heterogeneous populations of products. This result was surprising as the 600mer PSS and 500-600 nt RNA have similar mass and charge. Like ssRNA, PSS also has a short 4 nm persistence length, but unlike RNA, PSS lacks a compact tertiary structure. These data indicate that even for flexible substrates, shape as well as size affect assembly and are consistent with the hypothesis that work, derived from protein-protein and protein-substrate interactions, is used to compact the substrate.


Assuntos
Proteínas do Capsídeo/fisiologia , Capsídeo/química , Vírus 40 dos Símios/ultraestrutura , Montagem de Vírus , Polieletrólitos , Polimerização , Polímeros , Poliestirenos , RNA
14.
Artigo em Inglês | MEDLINE | ID: mdl-27956427

RESUMO

Combination therapies are standard for management of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections; however, no such therapies are established for human hepatitis B virus (HBV). Recently, we identified several promising inhibitors of HBV RNase H (here simply RNase H) activity that have significant activity against viral replication in vitro Here, we investigated the in vitro antiviral efficacy of combinations of two RNase H inhibitors with the current anti-HBV drug nucleoside analog lamivudine, with HAP12, an experimental core protein allosteric modulator, and with each other. Anti-HBV activities of the compounds were tested in a HepG2-derived cell line by monitoring intracellular core particle DNA levels, and cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. The antiviral efficiencies of the drug combinations were evaluated using the median-effect equation derived from the mass-action law principle and combination index theorem of Chou and Talalay. We found that combinations of two RNase H inhibitors from different chemical classes were synergistic with lamivudine against HBV DNA synthesis. Significant synergism was also observed for the combination of the two RNase H inhibitors. Combinations of RNase H inhibitors with HAP12 had additive antiviral effects. Enhanced cytotoxicity was not observed in the combination experiments. Because of these synergistic and additive effects, the antiviral activity of combinations of RNase H inhibitors with drugs that act by two different mechanisms and with each other can be achieved by administering the compounds in combination at doses below the respective single drug doses.


Assuntos
Antivirais/farmacologia , Desoxicitidina/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Lamivudina/farmacologia , Ribonuclease H/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Regulação Alostérica , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Expressão Gênica , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Humanos , Isoquinolinas/farmacologia , Cinética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Sais de Tetrazólio , Tiazóis , Tropolona/análogos & derivados , Tropolona/farmacologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
15.
Annu Rev Virol ; 3(1): 429-451, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27482896

RESUMO

Hepatitis B virus is one of the smallest human pathogens, encoded by a 3,200-bp genome with only four open reading frames. Yet the virus shows a remarkable diversity in structural features, often with the same proteins adopting several conformations. In part, this is the parsimony of viruses, where a minimal number of proteins perform a wide variety of functions. However, a more important theme is that weak interactions between components as well as components with multiple conformations that have similar stabilities lead to a highly dynamic system. In hepatitis B virus, this is manifested as a virion where the envelope proteins have multiple structures, the envelope-capsid interaction is irregular, and the capsid is a dynamic compartment that actively participates in metabolism of the encapsidated genome and carries regulated signals for intracellular trafficking.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/ultraestrutura , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/ultraestrutura , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus/fisiologia , Capsídeo/metabolismo , Genoma Viral/genética , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/ultraestrutura , Antígenos E da Hepatite B/ultraestrutura , Vírus da Hepatite B/genética , Humanos
17.
J Virol ; 90(8): 3994-4004, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26842475

RESUMO

UNLABELLED: Though the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design. IMPORTANCE: Hepatitis B virus core protein has multiple roles in the viral life cycle-assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions-making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid "breathes" and is trapped in different states by the drug and crystallization. Understanding that the capsid is a moving target will aid drug design and improve our understanding of HBV interaction with its environment.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Vírus da Hepatite B/química , Pirimidinas/química , Sítio Alostérico , Antivirais/química , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Cristalografia , Antígenos do Núcleo do Vírus da Hepatite B/química , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pirimidinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo
18.
Antiviral Res ; 121: 82-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26129969

RESUMO

Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Replicação Viral , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
19.
J Virol ; 88(24): 14105-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25253350

RESUMO

UNLABELLED: Woodchuck hepatitis virus (WHV), a close relative of human hepatitis B virus (HBV), has been a key model for disease progression and clinical studies. Sequences of the assembly domain of WHV and HBV core proteins (wCp149 and hCp149, respectively) have 65% identity, suggesting similar assembly behaviors. We report a cryo-electron microscopy (cryo-EM) structure of the WHV capsid at nanometer resolution and characterization of wCp149 assembly. At this resolution, the T=4 capsid structures of WHV and HBV are practically identical. In contrast to their structural similarity, wCp149 demonstrates enhanced assembly kinetics and stronger dimer-dimer interactions than hCp149: at 23 °C and at 100 mM ionic strength, the pseudocritical concentrations of assembly of wCp149 and hCp149 are 1.8 µM and 43.3 µM, respectively. Transmission electron microscopy reveals that wCp149 assembles into predominantly T=4 capsids with a sizeable population of larger, nonicosahedral structures. Charge detection mass spectrometry indicates that T=3 particles are extremely rare compared to the ∼ 5% observed in hCp149 reactions. Unlike hCp149, wCp149 capsid assembly is favorable over a temperature range of 4 °C to 37 °C; van't Hoff analyses relate the differences in temperature dependence to the high positive values for heat capacity, enthalpy, and entropy of wCp149 assembly. Because the final capsids are so similar, these findings suggest that free wCp149 and hCp149 undergo different structural transitions leading to assembly. The difference in the temperature dependence of wCp149 assembly may be related to the temperature range of its hibernating host. IMPORTANCE: In this paper, we present a cryo-EM structure of a WHV capsid showing its similarity to HBV. We then observe that the assembly properties of the two homologous proteins are very different. Unlike human HBV, the capsid protein of WHV has evolved to function in a nonhomeostatic environment. These studies yield insight into the interplay between core protein self-assembly and the host environment, which may be particularly relevant to plant viruses and viruses with zoonotic cycles involving insect vectors.


Assuntos
Hepadnaviridae/fisiologia , Vírus da Hepatite B da Marmota/fisiologia , Proteínas do Core Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus/efeitos da radiação , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Hepadnaviridae/efeitos da radiação , Hepadnaviridae/ultraestrutura , Vírus da Hepatite B da Marmota/efeitos da radiação , Vírus da Hepatite B da Marmota/ultraestrutura , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Temperatura , Vírion/ultraestrutura
20.
Biochemistry ; 53(34): 5496-504, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25102363

RESUMO

During the hepatitis B virus (HBV) life cycle, capsid assembly and disassembly must ensure correct packaging and release of the viral genome. Here we show that changes in the dynamics of the core protein play an important role in regulating these processes. The HBV capsid assembles from 120 copies of the core protein homodimer. Each monomer contains a conserved cysteine at position 61 that can form an intradimer disulfide that we use as a marker for dimer conformational states. We show that dimers in the context of capsids form intradimer disulfides relatively rapidly. Surprisingly, compared to reduced dimers, fully oxidized dimers assembled slower and into capsids that were morphologically similar but less stable. We hypothesize that oxidized protein adopts a geometry (or constellation of geometries) that is unfavorable for capsid assembly, resulting in weaker dimer-dimer interactions as well as slower assembly kinetics. Our results suggest that structural flexibility at the core protein intradimer interface is essential for regulating capsid assembly and stability. We further suggest that capsid destabilization by the C61-C61 disulfide has a regulatory function to support capsid disassembly and release of the viral genome.


Assuntos
Capsídeo/química , Vírus da Hepatite B/química , Proteínas do Core Viral/química , Sequência de Aminoácidos , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Homologia de Sequência de Aminoácidos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA