Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771023

RESUMO

Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.


Assuntos
Malus , Neoplasias , Humanos , NF-kappa B/metabolismo , Malus/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Neoplasias/prevenção & controle , Neoplasias/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
2.
Antioxidants (Basel) ; 11(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139832

RESUMO

Human serum albumin (HSA) represents the most abundant plasma protein, with relevant antioxidant activity due to the presence of the sulfhydryl group on cysteine at position 34 (Cys34), the latter being one of the major target sites for redox-dependent modifications leading to the formation of mixed disulfide linkages with low molecular weight thiols. Thiolated forms of HSA (Thio-HSA) may be useful as markers of an unbalanced redox state and as a potential therapeutic target. Indeed, we have previously reported that albumin Cys34 can be regenerated in vitro by N-Acetylcysteine (NAC) through a thiol-disulfide breaking mechanism, with a full recovery of the HSA antioxidant and antiplatelet activities. With this case study, we aimed to assess the ability of NAC to regenerate native mercaptoalbumin (HSA-SH) and the plasma antioxidant capacity in subjects with redox unbalance, after oral and intravenous administration. A placebo-controlled crossover study, single-blinded, was performed on six hypertensive subjects, randomized into two groups, on a one-to-one basis with NAC (600 mg/die) or a placebo, orally and intravenously administered. Albumin isoforms, HSA-SH, Thio-HSA, and glutathione levels were evaluated by means of mass spectrometry. The plasma antioxidant activity was assessed by a fluorimetric assay. NAC, orally administered, significantly decreased the Thio-HSA levels in comparison with the pre-treatment conditions (T0), reaching the maximal effect after 60 min (-24.7 ± 8%). The Thio-HSA reduction was accompanied by a concomitant increase in the native HSA-SH levels (+6.4 ± 2%). After intravenous administration of NAC, a significant decrease of the Thio-HSA with respect to the pre-treatment conditions (T0) was observed, with a maximal effect after 30 min (-68.9 ± 10.6%) and remaining significant even after 6 h. Conversely, no effect on the albumin isoforms was detected with either the orally or the intravenously administered placebo treatments. Furthermore, the total antioxidant activity of the plasma significantly increased after NAC infusion with respect to the placebo (p = 0.0089). Interestingly, we did not observe any difference in terms of total glutathione corrected for hemoglobin, ruling out any effect of NAC on the intracellular glutathione and supporting its role as a disulfide-breaking agent. This case study confirms the in vitro experiments and demonstrates for the first time that NAC is able to regenerate mercaptoalbumin in vivo, allowing us to hypothesize that the recovery of Cys34 content can modulate in vivo oxidative stress and, hopefully, have an effect in oxidative-based diseases.

3.
Biomolecules ; 11(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918772

RESUMO

Cigarette smoking is a major independent risk factor for cardiovascular diseases (CVD). The underlying mechanisms, however, are not clearly understood. Lungs are the primary route of exposure to smoke, with pulmonary cells and surfactant being the first structures directly exposed, resulting in the leakage of the immature proteoform of surfactant protein B (proSP-B). Herein, we evaluated whether proSP-B joined the cargo of high-density lipoprotein (HDL) proteins in healthy young subjects (n = 106) without any CVD risk factor other than smoking, and if HDL-associated proSP-B (HDL-SPB) correlated with pulmonary function parameters, systemic inflammation, and oxidative stress. At univariable analysis, HDL-SPB resulted significantly higher in smokers (2.2-fold, p < 0.001) than in non-smokers. No significant differences have been detected between smokers and non-smokers for inflammation, oxidation variables, and alveolar-capillary diffusion markers. In a multivariable model, HDL-SPB was independently associated with smoking. In conclusion, HDL-SPB is not only a precocious and sensitive index of the acute effects of smoke, but it might be also a potential causal factor in the onset of the vascular damage induced by modified HDL. These findings contribute to the emerging concept that the quality of the HDL proteome, rather than the quantity of particles, plays a central role in CVD risk protection.


Assuntos
Pulmão/fisiologia , Proteína B Associada a Surfactante Pulmonar/sangue , Fumar Tabaco/efeitos adversos , Adulto , Fatores de Risco Cardiometabólico , Feminino , Humanos , Lipoproteínas HDL/sangue , Pulmão/metabolismo , Masculino , Estresse Oxidativo , Testes de Função Respiratória , Fumar Tabaco/sangue
4.
Antioxidants (Basel) ; 9(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824562

RESUMO

Human serum albumin (HSA) is associated with several physiological functions, such as maintaining oncotic pressure and microvascular integrity, among others. It also represents the major and predominant antioxidant in plasma due to the presence of the Cys34 sulfhydryl group. In this study, we assessed qualitative and quantitative changes in HSA in patients with heart failure (HF) and their relationship with the severity of the disease. We detected by means of mass spectrometry a global decrease of the HSA content in the plasma of HF patients in respect to control subjects, a significant increase of thio-HSA with a concomitant decrease in the reduced form of albumin. Cysteine and, at a lesser extent, homocysteine represent the most abundant thiol bound to HSA. A strong inverse correlation was also observed between cysteine-HSA and peak VO2/kg, an index of oxygen consumption associated with HF severity. Moreover, in HL-1 cardiomyocytes incubated with H2O2, we showed a significant decrease of cell viability in cells treated with thio-HSA in respect to restored native-HSA. In conclusion, we found for the first time that S-thiolation of albumin is increased in the plasma of HF patients and induced changes in the structure and antioxidant function of HSA, likely contributing to HF progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA