Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
World J Emerg Surg ; 18(1): 5, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624517

RESUMO

BACKGROUND: Severe traumatic brain-injured (TBI) patients should be primarily admitted to a hub trauma center (hospital with neurosurgical capabilities) to allow immediate delivery of appropriate care in a specialized environment. Sometimes, severe TBI patients are admitted to a spoke hospital (hospital without neurosurgical capabilities), and scarce data are available regarding the optimal management of severe isolated TBI patients who do not have immediate access to neurosurgical care. METHODS: A multidisciplinary consensus panel composed of 41 physicians selected for their established clinical and scientific expertise in the acute management of TBI patients with different specializations (anesthesia/intensive care, neurocritical care, acute care surgery, neurosurgery and neuroradiology) was established. The consensus was endorsed by the World Society of Emergency Surgery, and a modified Delphi approach was adopted. RESULTS: A total of 28 statements were proposed and discussed. Consensus was reached on 22 strong recommendations and 3 weak recommendations. In three cases, where consensus was not reached, no recommendation was provided. CONCLUSIONS: This consensus provides practical recommendations to support clinician's decision making in the management of isolated severe TBI patients in centers without neurosurgical capabilities and during transfer to a hub center.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/cirurgia , Hospitais , Encéfalo , Procedimentos Neurocirúrgicos , Hospitalização
3.
Neurocrit Care ; 37(1): 102-110, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35199305

RESUMO

BACKGROUND: Hyperventilation resulting in hypocapnic alkalosis (HA) is frequently encountered in spontaneously breathing patients with acute cerebrovascular conditions. The underlying mechanisms of this respiratory response have not been fully elucidated. The present study describes, applying the physical-chemical approach, the acid-base characteristics of cerebrospinal fluid (CSF) and arterial plasma of spontaneously breathing patients with aneurismal subarachnoid hemorrhage (SAH) and compares these results with those of control patients. Moreover, it investigates the pathophysiologic mechanisms leading to HA in SAH. METHODS: Patients with SAH admitted to the neurological intensive care unit and patients (American Society of Anesthesiologists physical status of 1 and 2) undergoing elective surgery under spinal anesthesia were enrolled. CSF and arterial samples were collected simultaneously. Electrolytes, strong ion difference (SID), partial pressure of carbon dioxide (PCO2), weak noncarbonic acids (ATOT), and pH were measured in CSF and arterial blood samples. RESULTS: Twenty spontaneously breathing patients with SAH and 25 controls were enrolled. The CSF of patients with SAH, as compared with controls, was characterized by a lower SID (23.1 ± 2.3 vs. 26.5 ± 1.4 mmol/L, p < 0.001) and PCO2 (40 ± 4 vs. 46 ± 3 mm Hg, p < 0.001), whereas no differences in ATOT (1.2 ± 0.5 vs. 1.2 ± 0.2 mmol/L, p = 0.95) and pH (7.34 ± 0.06 vs. 7.35 ± 0.02, p = 0.69) were observed. The reduced CSF SID was mainly caused by a higher lactate concentration (3.3 ± 1.3 vs. 1.4 ± 0.2 mmol/L, p < 0.001). A linear association (r = 0.71, p < 0.001) was found between CSF SID and arterial PCO2. A higher proportion of patients with SAH were characterized by arterial HA, as compared with controls (40 vs. 4%, p = 0.003). A reduced CSF-to-plasma difference in PCO2 was observed in nonhyperventilating patients with SAH (0.4 ± 3.8 vs. 7.8 ± 3.7 mm Hg, p < 0.001). CONCLUSIONS: Patients with SAH have a reduction of CSF SID due to an increased lactate concentration. The resulting localized acidifying effect is compensated by CSF hypocapnia, yielding normal CSF pH values and resulting in a higher incidence of arterial HA.


Assuntos
Hemorragia Subaracnóidea , Humanos , Equilíbrio Ácido-Base , Lactatos/líquido cefalorraquidiano , Pressão Parcial
4.
Acta Neurochir (Wien) ; 159(10): 1981-1989, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28791520

RESUMO

BACKGROUND: An external ventricular drain (EVD) is used to measure intracranial pressure (ICP) and to drain cerebrospinal fluid (CSF). The procedure is generally safe, but parenchymal sequelae are reported as a possible side effect, with variable incidence. We investigated the mechanical sequelae of EVD insertion and their clinical significance in acute brain-injured patients, with a special focus on hemorrhagic lesions. METHODS: Mechanical sequelae of EVD insertion were detected in patients by computed tomography (CT) and magnetic resonance imaging (MRI), performed for clinical purposes. RESULTS: In 155 patients we studied the brain tissue surrounding the EVD by CT scan (all patients) and MRI (16 patients); 53 patients were studied at three time points (day 1-2, day 3-10, >10 days after EVD placement) to document the lesion time course. Small hemorrhages, with a hyperdense core surrounded by a hypodense area, were identified by CT scan in 33 patients. The initial average (hyper- + hypodense) lesion volume was 8.16 ml, increasing up to 15 ml by >10 days after EVD insertion. These lesions were not accompanied by neurologic deterioration or ICP elevation. History of arterial hypertension, coagulation abnormalities and multiple EVD insertions were significantly associated with hemorrhages. In 122 non-hemorrhagic patients, we detected very small hypodense areas (average volume 0.38 ml) surrounding the catheter. At later times these hypodensities slightly increased. MRI studies in 16 patients identified both intra- and extracellular edema around the catheters. The extracellular component increased with time. CONCLUSION: EVD insertion, even when there are no clinically important complications, causes a tissue reaction with minimal bleedings and small areas of brain edema.


Assuntos
Edema Encefálico/etiologia , Lesões Encefálicas/cirurgia , Encéfalo/diagnóstico por imagem , Drenagem/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Edema Encefálico/diagnóstico por imagem , Lesões Encefálicas/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Pressão Intracraniana/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA