Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Cancer Prev ; 28(5): 383-389, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30234553

RESUMO

Multicomponent therapy has gained interest for its potential to synergize and subsequently lower the effective dose of each constituent required to reduce colon cancer risk. We have previously showed that rapidly cycling Lgr5 stem cells are exquisitely sensitive to extrinsic dietary factors that modulate colon cancer risk. In the present study, we quantified the dose-dependent synergistic properties of dietary n-3 polyunsaturated fatty acids (PUFA) and curcumin (Cur) to promote targeted apoptotic deletion of damaged colonic Lgr5 stem cells. For this purpose, both heterogeneous bulk colonocytes and Lgr5 stem cells were isolated from Lgr5-EGFP-IRES-CreER knock-in mice injected with azoxymethane (AOM). Isolated cells were analyzed for DNA damage (γH2AX), apoptosis (cleaved caspase-3), and targeted apoptosis (both γH2AX and cleaved caspase-3) at 12 h post-AOM injection. Comparison of the percentage of targeted apoptosis in Lgr5 stem cells (GFP) across a broad bioactive dose-range revealed an ED50 of 16.0 mg/day n-3 PUFA + 15.9 mg/day Cur. This corresponded to a human equivalent dose of 3.0 g n-3 PUFA + 3.0 g Cur. In summary, our results provide evidence that a low dose (n-3 PUFA + Cur) combination diet reduces AOM-induced DNA damage in Lgr5 stem cells and enhances targeted apoptosis of DNA-damaged cells, implying that a lower human equivalent dose can be utilized in future human clinical trials.


Assuntos
Neoplasias do Colo/prevenção & controle , Curcumina/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azoximetano/toxicidade , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Colo/citologia , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Feminino , Técnicas de Introdução de Genes , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/patologia , Neoplasias Experimentais/prevenção & controle , Células-Tronco Neoplásicas/patologia , Receptores Acoplados a Proteínas G/genética
2.
Cell Death Dis ; 7(11): e2460, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27831561

RESUMO

The majority of colon tumors are driven by aberrant Wnt signaling in intestinal stem cells, which mediates an efficient route toward initiating intestinal cancer. Natural lipophilic polyphenols and long-chain polyunsaturated fatty acids (PUFAs) generally suppress Wnt- and NF-κB- (nuclear factor-κ light-chain enhancer of activated B-cell) related pathways. However, the effects of these extrinsic agents on colonic leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) stem cells, the cells of origin of colon cancer, have not been documented to date. Therefore, we examined the effect of n-3 PUFA and polyphenol (curcumin) combination on Lgr5+ stem cells during tumor initiation and progression in the colon compared with an n-6 PUFA-enriched control diet. Lgr5-EGFP-IRES-creERT2 knock-in mice were fed diets containing n-6 PUFA (control), n-3 PUFA, n-6 PUFA+curcumin or n-3 PUFA+curcumin for 3 weeks, followed by 6 azoxymethane (AOM) injections, and terminated 17 weeks after the last injection. To further elucidate the effects of the dietary bioactives at the tumor initiation stage, Lgr5+ stem cells were also assessed at 12 and 24 h post AOM injection. Only n-3 PUFA+curcumin feeding reduced nuclear ß-catenin in aberrant crypt foci (by threefold) compared with control at the progression time point. n-3 PUFA+curcumin synergistically increased targeted apoptosis in DNA-damaged Lgr5+ stem cells by 4.5-fold compared with control at 12 h and maximally reduced damaged Lgr5+ stem cells at 24 h, down to the level observed in saline-treated mice. Finally, RNAseq analysis indicated that p53 signaling in Lgr5+ stem cells from mice exposed to AOM was uniquely upregulated only following n-3 PUFA+curcumin cotreatment. These novel findings demonstrate that Lgr5+ stem cells are uniquely responsive to external dietary cues following the induction of DNA damage, providing a therapeutic strategy for eliminating damaged Lgr5+ stem cells to reduce colon cancer initiation.


Assuntos
Ciclo Celular , Neoplasias do Colo/patologia , Dieta , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/citologia , Focos de Criptas Aberrantes/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azoximetano , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinógenos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quimioprevenção , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Curcumina/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Ácidos Graxos Ômega-3 , Óleos de Peixe/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Regeneração/efeitos dos fármacos , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo
3.
Biometrics ; 72(4): 1358-1368, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27037601

RESUMO

Most cancer research now involves one or more assays profiling various biological molecules, e.g., messenger RNA and micro RNA, in samples collected on the same individuals. The main interest with these genomic data sets lies in the identification of a subset of features that are active in explaining the dependence between platforms. To quantify the strength of the dependency between two variables, correlation is often preferred. However, expression data obtained from next-generation sequencing platforms are integer with very low counts for some important features. In this case, the sample Pearson correlation is not a valid estimate of the true correlation matrix, because the sample correlation estimate between two features/variables with low counts will often be close to zero, even when the natural parameters of the Poisson distribution are, in actuality, highly correlated. We propose a model-based approach to correlation estimation between two non-normal data sets, via a method we call Probabilistic Correlations ANalysis, or PCAN. PCAN takes into consideration the distributional assumption about both data sets and suggests that correlations estimated at the model natural parameter level are more appropriate than correlations estimated directly on the observed data. We demonstrate through a simulation study that PCAN outperforms other standard approaches in estimating the true correlation between the natural parameters. We then apply PCAN to the joint analysis of a microRNA (miRNA) and a messenger RNA (mRNA) expression data set from a squamous cell lung cancer study, finding a large number of negative correlation pairs when compared to the standard approaches.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Modelos Estatísticos , Distribuição de Poisson , Carcinoma de Células Escamosas/genética , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/análise , RNA Mensageiro/análise
4.
Data Brief ; 6: 398-404, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26862588

RESUMO

With the identification of Lgr5 as a definitive marker for intestinal stem cells, we used the highly novel, recently described, Lgr5-EGFP-IRES-cre ER (T2) knock in mouse model. Mice were injected with azoxymethane (AOM, a colon carcinogen) or saline (control) and fed a chemo-protective diet containing n-3 fatty acids and fermentable fiber (n-3 PUFA+pectin) or a control diet (n-6 PUFA + cellulose). Single cells were isolated from colonic mucosa crypts and three discrete populations of cells were collected via fluorescence activated cell sorting (FACS): Lgr5(high) (stem cells), Lgr5(low) (daughter cells) and Lgr5(negative) (differentiated cells). microRNA profiling and RNA sequencing were performed from the same sample and analyzed. These data refer to 'Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt' (Shah et al., 2016) [5].

5.
Carcinogenesis ; 37(2): 206-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26717997

RESUMO

Perturbations in DNA damage, DNA repair, apoptosis and cell proliferation in the base of the crypt where stem cells reside are associated with colorectal cancer (CRC) initiation and progression. Although the transformation of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)(+) cells is an extremely efficient route towards initiating small intestinal adenomas, the role of Lgr5(+) cells in CRC pathogenesis has not been well investigated. Therefore, we further characterized the properties of colonic Lgr5(+) cells compared to differentiated cells in Lgr5-EGFP-IRES-creER(T2) knock-in mice at the initiation stage of carcinogen azoxymethane (AOM)-induced tumorigenesis using a quantitative immunofluorescence microscopy approach. At 12 and 24h post-AOM treatment, colonic Lgr5(+) stem cells (GFP(high)) were preferentially damaged by carcinogen, exhibiting a 4.7-fold induction of apoptosis compared to differentiated (GFP(neg)) cells. Furthermore, with respect to DNA repair, O(6)-methylguanine DNA methyltransferase (MGMT) expression was preferentially induced (by 18.5-fold) in GFP(high) cells at 24h post-AOM treatment compared to GFP(neg) differentiated cells. This corresponded with a 4.3-fold increase in cell proliferation in GFP(high) cells. These data suggest that Lgr5(+) stem cells uniquely respond to alkylation-induced DNA damage by upregulating DNA damage repair, apoptosis and cell proliferation compared to differentiated cells in order to maintain genomic integrity. These findings highlight the mechanisms by which colonic Lgr5(+) stem cells respond to cancer-causing environmental factors.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Mucosa Intestinal/citologia , Células-Tronco/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Homeostase/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos , Mutagênicos/toxicidade , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia
6.
Biochim Biophys Acta ; 1862(1): 121-34, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26493444

RESUMO

There is mounting evidence that noncoding microRNAs (miRNA) are modulated by select chemoprotective dietary agents. For example, recently we demonstrated that the unique combination of dietary fish oil (containing n-3 fatty acids) plus pectin (fermented to butyrate in the colon) (FPA) up-regulates a subset of putative tumor suppressor miRNAs in intestinal mucosa, and down-regulates their predicted target genes following carcinogen exposure as compared to control (corn oil plus cellulose (CCA)) diet. To further elucidate the biological effects of diet and carcinogen modulated miR's in the colon, we verified that miR-26b and miR-203 directly target PDE4B and TCF4, respectively. Since perturbations in adult stem cell dynamics are generally believed to represent an early step in colon tumorigenesis and to better understand how the colonic stem cell population responds to environmental factors such as diet and carcinogen, we additionally determined the effects of the chemoprotective FPA diet on miRNAs and mRNAs in colonic stem cells obtained from Lgr5-EGFP-IRES-creER(T2) knock-in mice. Following global miRNA profiling, 26 miRNAs (P<0.05) were differentially expressed in Lgr5(high) stem cells as compared to Lgr5(negative) differentiated cells. FPA treatment up-regulated miR-19b, miR-26b and miR-203 expression as compared to CCA specifically in Lgr5(high) cells. In contrast, in Lgr5(negative) cells, only miR-19b and its indirect target PTK2B were modulated by the FPA diet. These data indicate for the first time that select dietary cues can impact stem cell regulatory networks, in part, by modulating the steady-state levels of miRNAs. To our knowledge, this is the first study to utilize Lgr5(+) reporter mice to determine the impact of diet and carcinogen on miRNA expression in colonic stem cells and their progeny.


Assuntos
Carcinógenos , Colo/patologia , Neoplasias do Colo/genética , Dieta , Ácidos Graxos Ômega-3/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Nicho de Células-Tronco , Animais , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Colo/metabolismo , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Quinase 2 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos , Fatores de Proteção , Nicho de Células-Tronco/efeitos dos fármacos , Fator de Transcrição 4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA