Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cancer Metab ; 12(1): 5, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350962

RESUMO

BACKGROUND: PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS: From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS: PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS: Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.

2.
Cell Death Dis ; 13(6): 573, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764612

RESUMO

Channelling of glucose via glycogen, known as the glycogen shunt, may play an important role in the metabolism of brain tumours, especially in hypoxic conditions. We aimed to dissect the role of glycogen degradation in glioblastoma (GBM) response to ionising radiation (IR). Knockdown of the glycogen phosphorylase liver isoform (PYGL), but not the brain isoform (PYGB), decreased clonogenic growth and survival of GBM cell lines and sensitised them to IR doses of 10-12 Gy. Two to five days after IR exposure of PYGL knockdown GBM cells, mitotic catastrophy and a giant multinucleated cell morphology with senescence-like phenotype developed. The basal levels of the lysosomal enzyme alpha-acid glucosidase (GAA), essential for autolysosomal glycogen degradation, and the lipidated forms of gamma-aminobutyric acid receptor-associated protein-like (GABARAPL1 and GABARAPL2) increased in shPYGL U87MG cells, suggesting a compensatory mechanism of glycogen degradation. In response to IR, dysregulation of autophagy was shown by accumulation of the p62 and the lipidated form of GABARAPL1 and GABARAPL2 in shPYGL U87MG cells. IR increased the mitochondrial mass and the colocalisation of mitochondria with lysosomes in shPYGL cells, thereby indicating reduced mitophagy. These changes coincided with increased phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase 2, slower ATP generation in response to glucose loading and progressive loss of oxidative phosphorylation. The resulting metabolic deficiencies affected the availability of ATP required for mitosis, resulting in the mitotic catastrophy observed in shPYGL cells following IR. PYGL mRNA and protein levels were higher in human GBM than in normal human brain tissues and high PYGL mRNA expression in GBM correlated with poor patient survival. In conclusion, we show a major new role for glycogen metabolism in GBM cancer. Inhibition of glycogen degradation sensitises GBM cells to high-dose IR indicating that PYGL is a potential novel target for the treatment of GBMs.


Assuntos
Glioblastoma , Trifosfato de Adenosina , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Glucose/farmacologia , Glicogênio/metabolismo , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Humanos , Fígado/metabolismo , Isoformas de Proteínas , RNA Mensageiro
3.
Med Oncol ; 38(10): 116, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410522

RESUMO

Lipid metabolism reprogramming is one of the adaptive events that drive tumor development and survival, and may account for resistance to chemotherapeutic drugs. Perilipins are structural proteins associated with lipophagy and lipid droplet integrity, and their overexpression is associated with tumor aggressiveness. Here, we sought to explore the role of lipid droplet-related protein perilipin-3 (PLIN3) in prostate cancer (PCa) chemotherapy. We investigated the role of PLIN3 suppression in docetaxel cytotoxic activity in PCa cell lines. Additional effects of PLIN3 depletion on autophagy-related proteins and gene expression patterns, apoptotic potential, proliferation rate, and ATP levels were examined. Depletion of PLIN3 resulted in docetaxel resistance, accompanied by enhanced autophagic flux. We further assessed the synergistic effect of autophagy suppression with chloroquine on docetaxel cytotoxicity. Inhibition of autophagy with chloroquine reversed chemoresistance of stably transfected shPLIN3 PCa cell lines, with no effect on the parental ones. The shPLIN3 cell lines also exhibited reduced Caspase-9 related apoptosis initiation. Moreover, we assessed PLIN3 expression in a series of PCa tissue specimens, were complete or partial loss of PLIN3 expression was frequently noted in 70% of the evaluated specimens. Following PLIN3 silencing, PCa cells were characterized by impaired lipophagy and acquired an enhanced autophagic response upon docetaxel-induced cytotoxic stress. Such an adaptation leads to resistance to docetaxel, which could be reversed by the autophagy blocker chloroquine. Given the frequent loss of PLIN3 expression in PCa specimens, we suggest that combination of docetaxel with chloroquine may improve the efficacy of docetaxel treatment in PLIN3-deficient cancer patients.


Assuntos
Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos , Perilipina-3/genética , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Masculino , Neoplasias da Próstata/genética
4.
J Theor Biol ; 527: 110792, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34087269

RESUMO

In cancer, treatment failure and disease recurrence have been associated with small subpopulations of cancer cells with a stem-like phenotype. In this paper, we develop and investigate a phenotype-structured model of solid tumour growth in which cells are structured by a stemness level, which varies continuously between stem-like and terminally differentiated behaviours. Cell evolution is driven by proliferation and death, as well as advection and diffusion with respect to the stemness structure variable. Here, the magnitude and sign of the advective flux are allowed to vary with the oxygen level. We use the model to investigate how the environment, in particular oxygen levels, affects the tumour's population dynamics and composition, and its response to radiotherapy. We use a combination of numerical and analytical techniques to quantify how under physiological oxygen levels the cells evolve to a differentiated phenotype and under low oxygen level (i.e., hypoxia) they de-differentiate. Under normoxia, the proportion of cancer stem cells is typically negligible and the tumour may ultimately become extinct whereas under hypoxia cancer stem cells comprise a dominant proportion of the tumour volume, enhancing radio-resistance and favouring the tumour's long-term survival. We then investigate how such phenotypic heterogeneity impacts the tumour's response to treatment with radiotherapy under normoxia and hypoxia. Of particular interest is establishing how the presence of radio-resistant cancer stem cells can facilitate a tumour's regrowth following radiotherapy. We also use the model to show how radiation-induced changes in tumour oxygen levels can give rise to complex re-growth dynamics. For example, transient periods of hypoxia induced by damage to tumour blood vessels may rescue the cancer cell population from extinction and drive secondary regrowth.


Assuntos
Neoplasias , Variação Biológica da População , Hipóxia Celular , Humanos , Hipóxia , Neoplasias/radioterapia , Células-Tronco Neoplásicas , Oxigênio
5.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945502

RESUMO

Similar to tumor-initiating cells (TICs), minimal residual disease (MRD) is capable of reinitiating tumors and causing recurrence. However, the molecular characteristics of solid tumor MRD cells and drivers of their survival have remained elusive. Here we performed dense multiregion transcriptomics analysis of paired biopsies from 17 ovarian cancer patients before and after chemotherapy. We reveal that while MRD cells share important molecular signatures with TICs, they are also characterized by an adipocyte-like gene expression signature and a portion of them had undergone epithelial-mesenchymal transition (EMT). In a cell culture MRD model, MRD-mimic cells showed the same phenotype and were dependent on fatty acid oxidation (FAO) for survival and resistance to cytotoxic agents. These findings identify EMT and FAO as attractive targets to eradicate MRD in ovarian cancer and make a compelling case for the further testing of FAO inhibitors in treating MRD.


Assuntos
Adipócitos/metabolismo , Carcinoma Epitelial do Ovário/genética , Transição Epitelial-Mesenquimal/genética , Neoplasia Residual/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/genética , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/administração & dosagem , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Procedimentos Cirúrgicos de Citorredução , Ácidos Graxos/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Neoplasia Residual/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Oxirredução , Paclitaxel/administração & dosagem , Transcriptoma
6.
Cancers (Basel) ; 13(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916413

RESUMO

Metabolic reprogramming is a common hallmark in cancer. The high complexity and heterogeneity in cancer render it challenging for scientists to study cancer metabolism. Despite the recent advances in single-cell metabolomics based on mass spectrometry, the analysis of metabolites is still a destructive process, thus limiting in vivo investigations. Being label-free and nonperturbative, Raman spectroscopy offers intrinsic information for elucidating active biochemical processes at subcellular level. This review summarizes recent applications of Raman-based techniques, including spontaneous Raman spectroscopy and imaging, coherent Raman imaging, and Raman-stable isotope probing, in contribution to the molecular understanding of the complex biological processes in the disease. In addition, this review discusses possible future directions of Raman-based technologies in cancer research.

7.
Br J Cancer ; 124(2): 494-505, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028955

RESUMO

BACKGROUND: Glutamine (Gln) is an abundant nutrient used by cancer cells. Breast cancers cells and particularly triple-receptor negative breast cancer (TNBC) are reported to be dependent on Gln to produce the energy required for survival and proliferation. Despite intense research on the role of the intracellular Gln pathway, few reports have focussed on Gln transporters in breast cancer and TNBC. METHODS: The role and localisation of the Gln transporter SLC38A2/SNAT2 in response to Gln deprivation or pharmacological stresses was examined in a panel of breast cancer cell lines. Subsequently, the effect of SLC38A2 knockdown in Gln-sensitive cell lines was analysed. The prognostic value of SLC38A2 in a cohort of breast cancer was determined by immunohistochemistry. RESULTS: SLC38A2 was identified as a strongly expressed amino acid transporter in six breast cancer cell lines. We confirmed an autophagic route of degradation for SLC38A2. SLC38A2 knockdown decreased Gln consumption, inhibited cell growth, induced autophagy and led to ROS production in a subgroup of Gln-sensitive cell lines. High expression of SLC38A2 protein was associated with poor breast cancer specific survival in a large cohort of patients (p = 0.004), particularly in TNBC (p = 0.02). CONCLUSIONS: These results position SLC38A2 as a selective target for inhibiting growth of Gln-dependent breast cancer cell lines.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Estresse Oxidativo/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico
9.
EMBO J ; 39(16): e103009, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32720716

RESUMO

Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.


Assuntos
Proliferação de Células , Exossomos , Glutamina/deficiência , Sistema de Sinalização das MAP Quinases , Neoplasias , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
Cancer Metab ; 8: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32647572

RESUMO

BACKGROUND: Humans produce heat through non-shivering thermogenesis, a metabolic process that occurs in inducible beige adipocytes expressing uncoupling protein 1 (UCP1). UCP1 dissipates the proton gradient of the mitochondrial inner membrane and converts that energy into heat. It is unclear whether cancer cells can exhibit autonomous thermogenesis. Previously, we found that the knockdown of hypoxia-inducible fatty acid binding protein 7 (FABP7) increased reactive oxygen species (ROS) in breast cancer cells. ROS are known to induce beige adipocyte differentiation. METHODS: We investigated the association of tumor hypoxia, FABP7, and UCP1 across breast cancer patients using METABRIC and TCGA data sets. Furthermore, using a breast cancer cell line, HCC1806, we tested the effect of FABP7 knockdown on cellular physiology including thermogenesis. RESULTS: We found a strong mutual exclusivity of FABP7 and UCP1 expression both in METABRIC and in TCGA, indicating major metabolic phenotypic differences. FABP7 was preferentially distributed in poorly differentiated-, estrogen receptor (ER) negative tumors. In contrast, UCP1 was highly expressed in normal ducts and well-differentiated-, ER positive-, less hypoxic tumors. In the cell line-based experiments, UCP1 and its transcriptional regulators were upregulated upon FABP7 knockdown. UCP1 was induced in about 20% of cancer cells, and the effect was increased further in hypoxia. UCP1 depolarized mitochondrial membranes at the site of expression. UCP1 induction was associated with the increase in proton leak, glycolysis, and maximal respiration, mimicking the typical energy profile of beige adipocytes. Most importantly, UCP1 induction elevated cancer cell temperature associated with increased vulnerability to hypoxia and γ-irradiation. CONCLUSIONS: We demonstrated that breast cancer cells can undergo thermogenesis through UCP1 induction. Disrupting FABP7-mediated fatty acid metabolism can unlock UCP1-mediated thermogenesis, potentially making it possible to develop therapies to target thermogenesis. Further study would be warranted to investigate the effect of rise in temperature of cancer cells on patients' outcomes and the relationship to other metabolic pathways.

11.
Metabolites ; 9(12)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775252

RESUMO

Adhesion G Protein-Coupled Receptor L4 (ADGRL4/ELTD1) is an endothelial cell adhesion G protein-coupled receptor (aGPCR) which regulates physiological and tumour angiogenesis, providing an attractive target for anti-cancer therapeutics. To date, ADGRL4/ELTD1's full role and mechanism of function within endothelial biology remains unknown, as do its ligand(s). In this study, ADGRL4/ELTD1 silencing, using two independent small interfering RNAs (siRNAs), was performed in human umbilical vein endothelial cells (HUVECS) followed by transcriptional profiling, target gene validation, and metabolomics using liquid chromatography-mass spectrometry in order to better characterise ADGRL4/ELTD1's role in endothelial cell biology. We show that ADGRL4/ELTD1 silencing induced expression of the cytoplasmic metabolic regulator ATP Citrate Lyase (ACLY) and the mitochondria-to-cytoplasm citrate transporter Solute Carrier Family 25 Member 1 (SLC25A1) but had no apparent effect on pathways downstream of ACLY (fatty acid and cholesterol synthesis or acetylation). Silencing induced KIT expression and affected the Notch signalling pathway, upregulating Delta Like Canonical Notch Ligand 4 (DLL4) and suppressing Jagged Canonical Notch Ligand 1 (JAG1) and Hes Family BHLH Transcription Factor 2 (HES2). The effect of ADGRL4/ELTD1 silencing on the cellular metabolic profile was modest but several metabolites were significantly affected. Cis-aconitic acid, uridine diphosphate (UDP)-glucoronate, fructose 2,6-diphosphate, uridine 5-diphosphate, and aspartic acid were all elevated as a result of silencing and phosphocreatine, N-acetylglutamic acid, taurine, deoxyadenosine triphosphate, and cytidine monophosphate were depleted. Metabolic pathway analysis implicated ADGRL4/ELTD1 in pyrimidine, amino acid, and sugar metabolism. In summary, this study shows that ADGRL4/ELTD1 impacts core components of endothelial metabolism and regulates genes involved in endothelial differentiation/homeostasis and Notch signalling.

12.
Proc Natl Acad Sci U S A ; 116(25): 12452-12461, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31152137

RESUMO

Tumor hypoxia is associated with poor patient outcomes in estrogen receptor-α-positive (ERα+) breast cancer. Hypoxia is known to affect tumor growth by reprogramming metabolism and regulating amino acid (AA) uptake. Here, we show that the glutamine transporter, SNAT2, is the AA transporter most frequently induced by hypoxia in breast cancer, and is regulated by hypoxia both in vitro and in vivo in xenografts. SNAT2 induction in MCF7 cells was also regulated by ERα, but it became predominantly a hypoxia-inducible factor 1α (HIF-1α)-dependent gene under hypoxia. Relevant to this, binding sites for both HIF-1α and ERα overlap in SNAT2's cis-regulatory elements. In addition, the down-regulation of SNAT2 by the ER antagonist fulvestrant was reverted in hypoxia. Overexpression of SNAT2 in vitro to recapitulate the levels induced by hypoxia caused enhanced growth, particularly after ERα inhibition, in hypoxia, or when glutamine levels were low. SNAT2 up-regulation in vivo caused complete resistance to antiestrogen and, partially, anti-VEGF therapies. Finally, high SNAT2 expression levels correlated with hypoxia profiles and worse outcome in patients given antiestrogen therapies. Our findings show a switch in the regulation of SNAT2 between ERα and HIF-1α, leading to endocrine resistance in hypoxia. Development of drugs targeting SNAT2 may be of value for a subset of hormone-resistant breast cancer.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/patologia , Hipóxia Celular , Resistencia a Medicamentos Antineoplásicos , Moduladores de Receptor Estrogênico/uso terapêutico , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Feminino , Xenoenxertos , Humanos , Camundongos , Microambiente Tumoral
13.
Mol Cancer Res ; 17(7): 1531-1544, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30885992

RESUMO

Hypoxia-inducible factor 1α is a key regulator of the hypoxia response in normal and cancer tissues. It is well recognized to regulate glycolysis and is a target for therapy. However, how tumor cells adapt to grow in the absence of HIF1α is poorly understood and an important concept to understand for developing targeted therapies is the flexibility of the metabolic response to hypoxia via alternative pathways. We analyzed pathways that allow cells to survive hypoxic stress in the absence of HIF1α, using the HCT116 colon cancer cell line with deleted HIF1α versus control. Spheroids were used to provide a 3D model of metabolic gradients. We conducted a metabolomic, transcriptomic, and proteomic analysis and integrated the results. These showed surprisingly that in three-dimensional growth, a key regulatory step of glycolysis is Aldolase A rather than phosphofructokinase. Furthermore, glucose uptake could be maintained in hypoxia through upregulation of GLUT14, not previously recognized in this role. Finally, there was a marked adaptation and change of phosphocreatine energy pathways, which made the cells susceptible to inhibition of creatine metabolism in hypoxic conditions. Overall, our studies show a complex adaptation to hypoxia that can bypass HIF1α, but it is targetable and it provides new insight into the key metabolic pathways involved in cancer growth. IMPLICATIONS: Under hypoxia and HIF1 blockade, cancer cells adapt their energy metabolism via upregulation of the GLUT14 glucose transporter and creatine metabolism providing new avenues for drug targeting.


Assuntos
Neoplasias do Colo/genética , Metabolismo Energético/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias do Colo/patologia , Creatina/genética , Creatina/metabolismo , Frutose-Bifosfato Aldolase/genética , Glucose/metabolismo , Glicólise/genética , Células HCT116 , Humanos , Esferoides Celulares/metabolismo , Hipóxia Tumoral/genética
14.
Invest New Drugs ; 36(5): 773-781, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29387992

RESUMO

Effective cytoprotectors that are selective for normal tissues could decrease radiotherapy and chemotherapy sequelae and facilitate the safe administration of higher radiation doses. This could improve the cure rates of radiotherapy for cancer patients. Autophagy is a cytoplasmic cellular process that is necessary for the clearance of damaged or aged proteins and organelles. It is a strong determinant of post-irradiation cell fate. In this study, we investigated the effect of the mTOR-independent small molecule enhancer of autophagy (SMER28) on mouse liver autophagy and post-irradiation recovery of mouse bone marrow and liver. SMER28 enhanced the autophagy flux and improved the survival of normal hepatocytes. This effect was specific for normal cells because SMER28 had no protective effect on hepatoma or other cancer cell line survival in vitro. In vivo subcutaneous administration of SMER28 protected mouse liver and bone marrow against radiation damage and facilitated survival of mice after lethal whole body or abdominal irradiation. These findings open a new field of research on autophagy-targeting radioprotectors with clinical applications in oncology, occupational, and space medicine.


Assuntos
Compostos Alílicos/farmacologia , Autofagia/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Fígado/efeitos dos fármacos , Quinazolinas/farmacologia , Protetores contra Radiação/farmacologia , Animais , Autofagia/efeitos da radiação , Medula Óssea/efeitos da radiação , Linhagem Celular , Humanos , Fígado/efeitos da radiação , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/radioterapia , Serina-Treonina Quinases TOR , Irradiação Corporal Total
15.
Anticancer Res ; 38(1): 227-238, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277777

RESUMO

BACKGROUND/AIM: Amifostine is the only selective normal tissue cytoprotector, approved for the protection against platinum toxicities and radiotherapy-induced xerostomia. Free radical scavenger and DNA repair activities have been attributed to the drug. MATERIALS AND METHODS: We investigated the effect of amifostine on autophagy, lysosomal biogenesis and lipophagy of normal mouse liver exposed to clinically relevant doses of radiation. RESULTS: The study provides evidence that ionizing radiation blocks autophagy activity and lysosomal biogenesis in normal mouse liver. Amifostine, protects the liver autophagic machinery and induces lysosomal biogenesis. By suppressing autophagy, ionizing radiation induces lipid droplet accumulation, while pre-treatment with amifostine protects lipophagy and up-regulates the TIP47 protein and mRNA levels, showing a maintenance of lipid metabolism in the liver cells. CONCLUSION: It is concluded that amifostine, aside to DNA protection activity, exerts its cytoprotective function by preventing radiation-induced blockage of autophagy, lysosomal biogenesis and lipophagy.


Assuntos
Amifostina/farmacologia , Fígado/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Animais , Autofagia/efeitos dos fármacos , Raios gama , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos da radiação , Fígado/ultraestrutura , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos BALB C
16.
Sci Rep ; 6: 30986, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27507219

RESUMO

The mechanism of Amifostine (WR-2721) mediated radioprotection is poorly understood. The effects of amifostine on human basal metabolism, mouse liver metabolism and on normal and tumor hepatic cells were studied. Indirect calorimetric canopy tests showed significant reductions in oxygen consumption and of carbon dioxide emission in cancer patients receiving amifostine. Glucose levels significantly decreased and lactate levels increased in patient venous blood. Although amifostine in vitro did not inhibit the activity of the prolyl-hydroxylase PHD2, experiments with mouse liver showed that on a short timescale WR-1065 induced expression of the Hypoxia Inducible Factor HIF1α, lactate dehydrogenase LDH5, glucose transporter GLUT2, phosphorylated pyruvate dehydrogenase pPDH and PDH-kinase. This effect was confirmed on normal mouse NCTC hepatocytes, but not on hepatoma cells. A sharp reduction of acetyl-CoA and ATP levels in NCTC cells indicated reduced mitochondrial usage of pyruvate. Transient changes of mitochondrial membrane potential and reactive oxygen species ROS production were evident. Amifostine selectively protects NCTC cells against radiation, whilst HepG2 neoplastic cells are sensitized. The radiation protection was correlates with HIF levels. These findings shed new light on the mechanism of amifostine cytoprotection and encourage clinical research with this agent for the treatment of primary and metastatic liver cancer.


Assuntos
Amifostina/farmacologia , Neoplasias da Mama/radioterapia , Protetores contra Radiação/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Basal/efeitos dos fármacos , Glicemia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Transportador de Glucose Tipo 2/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/efeitos da radiação , Hepatócitos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos Endogâmicos BALB C , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
17.
J Mol Med (Berl) ; 94(2): 137-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26882899

RESUMO

Metabolic reprogramming is a hallmark of cancer cells and contributes to their adaption within the tumour microenvironment and resistance to anticancer therapies. Recently, glycogen metabolism has become a recognised feature of cancer cells since it is upregulated in many tumour types, suggesting that it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells under stress conditions such as hypoxia, glucose deprivation and anticancer treatment. The various methods to detect glycogen in tumours in vivo as well as pharmacological modulators of glycogen metabolism are also reviewed. Finally, we discuss the therapeutic value of targeting glycogen metabolism as a strategy for combinational approaches in cancer treatment.


Assuntos
Glicogênio/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Progressão da Doença , Metabolismo Energético/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Especificidade de Órgãos/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
18.
PLoS One ; 10(9): e0137675, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26378792

RESUMO

LC3s (MAP1-LC3A, B and C) are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli), where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.


Assuntos
Autofagia/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/patologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Anticorpos/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Linhagem Celular Tumoral , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ivermectina/farmacologia , Macrolídeos/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , Interferência de RNA , RNA Interferente Pequeno
19.
Cancer Biol Ther ; 15(11): 1468-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482944

RESUMO

Glioblastoma cells are resistant to apoptotic stimuli with autophagic death prevailing under cytotoxic stress. Autophagy interfering agents may represent a new strategy to test in combination with chemo-radiation. We investigated the patterns of expression of autophagy related proteins (LC3A, LC3B, p62, Beclin 1, ULK1 and ULK2) in a series of patients treated with post-operative radiotherapy. Experiments with glioblastoma cell lines (T98 and U87) were also performed to assess autophagic response under conditions simulating the adverse intratumoral environment. Glioblastomas showed cytoplasmic overexpression of autophagic proteins in a varying extent, so that cases could be grouped into low and high expression groups. 10/23, 5/23, 13/23, 5/23, 8/23 and 9/23 cases examined showed extensive expression of LC3A, LC3B, Beclin 1, Ulk 1, Ulk 2 and p62, respectively. Lysosomal markers Cathepsin D and LAMP2a, as well as the lyososomal biogenesis transcription factor TFEB were frequently overexpressed in glioblastomas (10/23, 11/23, and 10/23 cases, respectively). TFEB was directly linked with PTEN, Cathepsin D, HIF1α, LC3B, Beclin 1 and p62 expression. PTEN was also significantly related with LC3B but not LC3A expression, in both immunohistochemistry and gene expression analysis. Confocal microscopy in T98 and U87 cell lines showed distinct identity of LC3A and LC3B autophagosomes. The previously reported stone-like structure (SLS) pattern of LC3 expression was related with prognosis. SLS were inducible in glioblastoma cell lines under exposure to acidic conditions and 2DG mediated glucose antagonism. The present study provides the basis for autophagic characterization of human glioblastoma for further translational studies and targeted therapy trials.


Assuntos
Autofagia , Glioblastoma/metabolismo , Lisossomos/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteína Beclina-1 , Biomarcadores , Encéfalo/metabolismo , Linhagem Celular Tumoral , Citoplasma , Expressão Gênica , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico
20.
Biochem Pharmacol ; 92(1): 3-11, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25219323

RESUMO

Since its identification more than 150 years ago, there has been an extensive characterisation of glycogen metabolism and its regulatory pathways in the two main glycogen storage organs of the body, i.e. liver and muscle. In recent years, glycogen metabolism has also been demonstrated to be upregulated in many tumour types, suggesting it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells. The various methods to detect glycogen in tumours in vivo are also reviewed. Finally, we discuss the targeting of glycogen metabolism as a strategy for cancer treatment.


Assuntos
Doença de Depósito de Glicogênio/metabolismo , Glicogênio/metabolismo , Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA