Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 147(1): 196-208.e13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24704720

RESUMO

BACKGROUND & AIMS: SMAD4 frequently is lost from colorectal cancers (CRCs), which is associated with the development of metastases and a poor prognosis. SMAD4 loss is believed to alter transforming growth factor ß signaling to promote tumor progression. However, SMAD4 is also a central component of the bone morphogenetic protein (BMP) signaling pathway, implicated in CRC pathogenesis by human genetic studies. We investigated the effects of alterations in BMP signaling on the invasive and metastatic abilities of CRC cells and changes in members in this pathway in human tumor samples. METHODS: We activated BMP signaling in SMAD4-positive and SMAD4-negative CRC cells (HCT116, HT-29, SW480, and LS174T); SMAD4 was stably expressed or knocked down using lentiviral vectors. We investigated the effects on markers of epithelial-mesenchymal transition and on cell migration, invasion, and formation of invadopodia. We performed kinase activity assays to characterize SMAD4-independent BMP signaling and used an inhibitor screen to identify pathways that regulate CRC cell migration. We investigated the effects of the ROCK inhibitor Y-27632 in immunocompromised (CD-1 Nu) mice with orthotopic metastatic tumors. Immunohistochemistry was used to detect BMPR1a, BMPR1b, BMPR2, and SMAD4 in human colorectal tumors; these were related to patient survival times. RESULTS: Activation of BMP signaling in SMAD4-negative cells altered protein and messenger RNA levels of markers of epithelial-mesenchymal transition and increased cell migration, invasion, and formation of invadopodia. Knockdown of the BMP receptor in SMAD4-negative cells reduced their invasive activity in vitro. SMAD4-independent BMP signaling activated Rho signaling via ROCK and LIM domain kinase (LIMK). Pharmacologic inhibition of ROCK reduced metastasis of colorectal xenograft tumors in mice. Loss of SMAD4 from colorectal tumors has been associated with reduced survival time; we found that this association is dependent on the expression of BMP receptors but not transforming growth factor ß receptors. CONCLUSIONS: Loss of SMAD4 from colorectal cancer cells causes BMP signaling to switch from tumor suppressive to metastasis promoting. Concurrent loss of SMAD4 and normal expression of BMP receptors in colorectal tumors was associated with reduced survival times of patients. Reagents that interfere with SMAD4-independent BMP signaling, such as ROCK inhibitors, might be developed as therapeutics for CRC.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Neoplasias Colorretais/fisiopatologia , Metástase Neoplásica/fisiopatologia , Transdução de Sinais/fisiologia , Proteína Smad4/deficiência , Quinases Associadas a rho/fisiologia , Idoso , Amidas/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica/patologia , Piridinas/farmacologia , Taxa de Sobrevida , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/efeitos dos fármacos
2.
PLoS One ; 8(2): e55707, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409024

RESUMO

Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA