RESUMO
Two copper(II) complexes containing diplacone (H4dipl), a naturally occurring C-geranylated flavanone derivative, in combination with bathophenanthroline (bphen) or 1,10-phenanthroline (phen) with the composition [Cu3(bphen)3(Hdipl)2]â 2H2O (1) and {[Cu(phen)(H2dipl)2]â 1.25H2O}n (2) were prepared and characterized. As compared to diplacone, the complexes enhanced in vitro cytotoxicity against A2780 and A2780R human ovarian cancer cells (IC50 ≈ 0.4-1.2 µM), human lung carcinoma (A549, with IC50 ≈ 2 µM) and osteosarcoma (HOS, with IC50 ≈ 3 µM). Cellular effects of the complexes in A2780 cells were studied using flow cytometry, covering studies concerning cell-cycle arrest, induction of cell death and autophagy and induction of intracellular ROS/superoxide production. These results uncovered a possible mechanism of action characterized by the G2/M cell cycle arrest. The studies on human endothelial cells revealed that complexes 1 and 2, as well as their parental compound diplacone, do possess anti-inflammatory activity in terms of NF-κB inhibition. As for the effects on PPARα and/or PPARγ, complex 2 reduced the expression of leukocyte adhesion molecules VCAM-1 and E-selectin suggesting its dual anti-inflammatory capacity. A wide variety of Cu-containing coordination species and free diplacone ligand were proved by mass spectrometry studies in water-containing media, which might be responsible for multimodal effect of the complexes.
Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Cobre , Flavanonas , Humanos , Flavanonas/farmacologia , Flavanonas/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cobre/farmacologia , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Espécies Reativas de Oxigênio/metabolismo , Autofagia/efeitos dos fármacosRESUMO
A bis(chalcone) molecule (H2L) was synthesized via Aldol's condensation from terephthalaldehyde and 2'-hydroxyacetophenone and it was used as bridging ligand for the preparation of five dinuclear copper(II) complexes of the composition [Cu(NN)(µ-L)Cu(NN)](NO3)2â nH2O (n = 0-2) (1-5), where NN stands for a bidentate N-donor ligand such as phen (1,10-phenanthroline, 1), bpy (2,2'-bipyridine, 2), mebpy (5,5'-dimethyl-2,2'-dipyridine, 3), bphen (bathophenanthroline, 4) and nphen (5-nitro-1,10-phenanthroline, 5). The compounds were characterized by different suitable techniques to confirm their purity, composition, and structure. Moreover, the products were evaluated for their in vitro cytotoxicity on a panel of human cancer cell lines: ovarian (A2780), ovarian resistant to cisplatin (A2780R), prostate (PC3), osteosarcoma (HOS), breast (MCF7) and lung (A549), and normal fibroblasts (MRC-5), showing significant cytotoxicity in most cases, with IC50 ≈ 0.35-7.8 µM. Additionally, the time-dependent cytotoxicity and cellular uptake of copper, together with flow cytometric studies concerning cell-cycle arrest, induction of cell death and autophagy and induction of intracellular ROS/superoxide production in A2780 cells, were also performed. The results of biological testing on A2780 cells pointed out a possible mechanism of action characterized by the G2/M cell cycle arrest and induction of apoptosis by triggering the intrinsic signalling pathway associated with the damage of mitochondrial structure and depletion of mitochondrial membrane potential. SYNOPSIS: Dinuclear Cu(II) complexes bearing a bridging bis(chalcone) ligand revealed high in vitro cytotoxicity, initiated A2780 cell arrest at G2/M phase and efficiently triggered intrinsic pathway of apoptosis.
Assuntos
Antineoplásicos , Chalcona , Chalconas , Complexos de Coordenação , Neoplasias Ovarianas , Humanos , Feminino , Cobre/química , Chalconas/farmacologia , Linhagem Celular Tumoral , Ligantes , Chalcona/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/química , ApoptoseRESUMO
Highly fluorescent carbon nanoparticles called carbon dots (CDs) have been the focus of intense research due to their simple chemical synthesis, nontoxic nature, and broad application potential including optoelectronics, photocatalysis, biomedicine, and energy-related technologies. Although a detailed elucidation of the mechanism of their photoluminescence (PL) remains an unmet challenge, the CDs exhibit robust, reproducible, and environment-sensitive PL signals, enabling us to monitor selected chemical phenomena including phase transitions or detection of ultralow concentrations of molecular species in solution. Herein, we report the PL turn-off/on behavior of aqueous CDs allowing the reversible monitoring of the water-ice phase transition. The bright PL attributable to molecular fluorophores present on the CD surface was quenched by changing the liquid aqueous environment to solid phase (ice). Based on light-induced electron paramagnetic resonance (LEPR) measurements and density functional theory (DFT) calculations, the proposed kinetic model assuming the presence of charge-separated trap states rationalized the observed sensitivity of PL lifetimes to the environment. Importantly, the PL quenching induced by freezing could be suppressed by adding a small amount of alcohols. This was attributed to a high tendency of alcohol to increase its concentration at the CD/solvent interface, as revealed by all-atom molecular dynamics simulations. Based on this behavior, a fluorescence "turn-on" alcohol sensor for exhaled breath condensate (EBC) analysis has been developed. This provided an easy method to detect alcohols among other common interferents in EBC with a low detection limit (100 ppm), which has a potential to become an inexpensive and noninvasive clinically useful diagnostic tool for early stage lung cancer screening.
RESUMO
A category of naked maghemite nanoparticles (γ-Fe2O3), named surface active maghemite nanoparticles (SAMNs), is characterized by biological safety, high water colloidal stability and a surface chemistry permitting the binding of ligands. In the present study, the interaction between SAMNs and an antibiotic displaying chelating properties (oxytetracycline, OxyTC) was extensively structurally and magnetically characterized. OxyTC emerged as an ideal probe for providing insights into the colloidal properties of SAMNs. At the same time, SAMNs turned out as an elective tool for water remediation from OxyTC. Therefore, a dilute colloidal suspension of SAMNs was used for the removal of OxyTC in large volume tanks where, to simulate a real in situ application, a population of zebrafish (Danio rerio) was introduced. Interestingly, SAMNs led to the complete removal of the drug without any sign of toxicity for the animal model. Moreover, OxyTC immobilized on SAMNs surface resulted safe for sensitive Escherichia coli bacteria strain. Thus, SAMNs were able to recover the drug and to suppress its antibiotic activity envisaging their feasibility as competitive option for water remediation from OxyTC in more nature related scenarios. The present contribution stimulates the use of novel smart colloidal materials to cope with complex environmental issues.
Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas de Magnetita/química , Oxitetraciclina/farmacologia , Suspensões/química , Animais , Antibacterianos/química , Coloides/química , Testes de Sensibilidade Microbiana , Oxitetraciclina/química , Tamanho da Partícula , Propriedades de Superfície , Peixe-ZebraRESUMO
The ability of peculiar iron oxide nanoparticles (IONPs) to evade the immune system was investigated in vivo. The nanomaterial was provided directly into the farming water of zebrafish ( Danio rerio) and the distribution of IONPs and the delivery of oxytetracycline (OTC) was studied evidencing the successful overcoming of the intestinal barrier and the specific and prolonged (28 days) organotropic delivery of OTC to the fish ovary. Noteworthy, no sign of adverse effects was observed. In fish blood, IONPs were able to specifically bind apolipoprotein A1 (Apo A1) and molecular modeling showed the structural analogy between the IONP@Apo A1 nanoconjugate and high-density lipoprotein (HDL). Thus, the preservation of the biological identity of the protein suggests a plausible explanation of the observed overcoming of the intestinal barrier, of the great biocompatibity of the nanomaterial, and of the prolonged drug delivery (benefiting of the lipoprotein transport route). The present study promises novel and unexpected stealth materials in nanomedicine.
Assuntos
Sistemas de Liberação de Medicamentos , Compostos Férricos/química , Nanopartículas Metálicas/química , Animais , Barreira Hematoencefálica , Cromatografia Líquida de Alta Pressão , Peixes , Espectrometria de Massas , Ligação ProteicaRESUMO
Heme c is characterized by its covalent attachment to a polypeptide. The attachment is typically to a CXXCH motif in which the two Cys form thioether bonds with the heme, "X" can be any amino acid other than Cys, and the His serves as a heme axial ligand. Some cytochromes c, however, contain heme attachment motifs with three or four intervening residues in a CX3CH or CX4CH motif. Here, the impacts of these variations in the heme attachment motif on heme ruffling and electronic structure are investigated by spectroscopically characterizing CX3CH and CX4CH variants of Hydrogenobacter thermophilus cytochrome c552. In addition, a novel CXCH variant is studied. 1H and 13C NMR, EPR, and resonance Raman spectra of the protein variants are analyzed to deduce the extent of ruffling using previously reported relationships between these spectral data and heme ruffling. In addition, the reduction potentials of these protein variants are measured using protein film voltammetry. The CXCH and CX4CH variants are found to have enhanced heme ruffling and lower reduction potentials. Implications of these results for the use of these noncanonical motifs in nature, and for the engineering of novel heme peptide structures, are discussed.
Assuntos
Grupo dos Citocromos c/química , Heme/química , Bactérias/enzimologia , Grupo dos Citocromos c/metabolismo , Heme/análogos & derivados , Heme/genética , Mutação , Conformação ProteicaRESUMO
BACKGROUND: Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. METHODS: SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. RESULTS: Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. CONCLUSIONS: Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. GENERAL SIGNIFICANCE: SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection.
Assuntos
DNA/química , Técnicas de Transferência de Genes , Nanopartículas/química , Transfecção/métodos , Fenômenos Biofísicos , Coloides/química , DNA/genética , Compostos Férricos/química , Vetores Genéticos , Humanos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/genéticaRESUMO
A new iron(iii)-centred ferric wheel Feâ{Fe6} of the formula [Fe7(H2L)6(NCS)6](ClO4)3·10H2O, where H4L = N,N'-bis(3-carboxylsalicylidene)-1,3-bis(3-aminopropyl)tetramethyldisiloxane, was synthesised and fully characterised. 57Fe Mössbauer spectra indicate the presence of high spin (S = 5/2) Fe3+ cations adopting a slightly different coordination environment in agreement with the X-ray diffraction structure. There are competing antiferromagnetic exchange interactions along the rim (J1 = -1.00 cm-1) and the radius (J2 = -1.46 cm-1) of the wheel.
RESUMO
A magnetic photocatalytic material composed of nanoscale zero-valent iron (nZVI) homogeneously distributed over a mesoporous nanocrystalline TiO2 matrix has been prepared by a multistage chemical process, including sol-gel technique, wet impregnation, and chemical reduction. X-ray powder diffraction and Raman spectroscopy were used for the structural and chemical characterization of the magnetic photocatalyst, while bulk magnetization measurements and scanning/transmission electron microscopy were employed to determine the physical and textural properties of the photocatalyst. The synthesized nZVI@TiO2 photocatalyst shows very high efficiency in the removal of hexavalent chromium, Cr(vi), from water. The degradation rate follows a pseudo-first-order kinetic model. Most importantly, the remarkable efficiency of the photocatalyst is found to be due to the synergistic contributions of both counterparts, nZVI and TiO2, as validated by comparative experiments with neat TiO2 and nZVI@TiO2 under UV-C irradiation and without irradiation. New insights into the mechanism of synergistic degradation of chromium(vi) and suppressed oxidation of nZVI particles in the composite material are proposed and therein discussed.
RESUMO
In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging.
Assuntos
Sistemas de Liberação de Medicamentos , Compostos Férricos/química , Imageamento por Ressonância Magnética , Magnetismo , Nanopartículas/química , BiotecnologiaRESUMO
Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (γ-Fe2 O3 ), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe(III) atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13±4â nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mössbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin.
Assuntos
Antioxidantes/química , Curcumina/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Animais , Humanos , Camundongos , Células NIH 3T3RESUMO
Biomimetic complexes are artificially engineered molecules that aim to reduce the structural complexity of biological systems in order to unveil the key electronic and structural factors relevant to a protein's function. In this work, a novel coordination compound (L2Fe2) which mimics non-heme binuclear proteins was synthesized from the Schiff-base ligand HL = (E)-N'-(phenyl(pyridin-2-yl)methylene)isonicotinohydrazide. The crystal structure of L2Fe2 showed that the intramolecular FeFe distances (3.13.2 Å) were analogous to those found in non-heme binuclear ferric proteins. However, in L2Fe2, two methoxide groups act as bridging units for oxidized iron (Fe3+). Such a bridging motif is unprecedented in the biological realm. Magnetic susceptibility measurements demonstrated that L2Fe2 is characterized by a singlet (S = 0) ground state and a very small magnetic coupling constant J (⪠−1 cm(−1)). The J value featured by L2Fe2 differs considerably from the values observed in non-heme binuclear proteins in the oxidized form (−100 cm(−1) < J < −10 cm(−1)), which encompass oxo/hydroxo and carboxylate bridging residues. The singlet ground state of L2Fe2 as well as the weak magnetic interaction between the two ferric cations was successfully predicted by density functional theory (DFT).
Assuntos
Compostos Férricos/química , Compostos Férricos/síntese química , Hidrazonas/química , Teoria Quântica , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Ligantes , Campos Magnéticos , Modelos Moleculares , Estrutura MolecularRESUMO
Core-shell hydrophilic superparamagnetic iron oxide (SPIO) nanoparticles, surface functionalized with either terephthalic acid or 2-amino terephthalic acid, showed large negative MRI contrast ability, validating the advantage of using low molecular weight and π-conjugated canopies for engineering functional nanostructures with superior performances.
Assuntos
Meios de Contraste/química , Desenho de Fármacos , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Imãs/química , Animais , Meios de Contraste/toxicidade , Compostos Férricos/toxicidade , Imãs/toxicidade , Camundongos , Células NIH 3T3 , Propriedades de SuperfícieRESUMO
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g(1)-value of 2.0090 for the tyrosyl radical was extracted. This g(1)-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν(7a)â=â1500 cm(-1)) was found to be insensitive to deuterium-oxide exchange. Additionally, the (18)O-sensitive Fe-O-Fe symmetric stretching (483 cm(-1)) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g(1)-value of â¼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053-33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity.
Assuntos
Bacillus cereus/enzimologia , Radicais Livres/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Ribonucleotídeo Redutases/metabolismo , Tirosina/metabolismo , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Camundongos , Micro-Ondas , Ribonucleotídeo Redutases/química , Espectrofotometria Ultravioleta , Análise Espectral Raman , Temperatura , Tirosina/químicaRESUMO
Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm⻹) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe²âº in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class.
Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/metabolismo , Herpesvirus Humano 4/metabolismo , Análise Espectral Raman/métodos , Tirosina/metabolismo , Ribonucleotídeo Redutases , Espectrofotometria UltravioletaRESUMO
The Fe(II)/2OG (2-oxoglutarate)-dependent dioxygenase superfamily comprises proteins that couple substrate oxidation to decarboxylation of 2OG to succinate. A member of this class of mononuclear non-haem Fe proteins is the Escherichia coli DNA/RNA repair enzyme AlkB. In the present work, we describe the magnetic and optical properties of the yet uncharacterized human ALKBH4 (AlkB homologue). Through EPR and UV-visible spectroscopy studies, we address the Fe-binding environment of the proposed catalytic centre of wild-type ALKBH4 and an Fe(II)-binding mutant. We could observe a novel unusual Fe(III) high-spin EPR-active species in the presence of sulfide with a g(max) of 8.2. The Fe(II) site was probed with NO. An intact histidine-carboxylate site is necessary for productive Fe binding. We also report the presence of a unique cysteine-rich motif conserved in the N-terminus of ALKBH4 orthologues, and investigate its possible Fe-binding ability. Furthermore, we show that recombinant ALKBH4 mediates decarboxylation of 2OG in absence of primary substrate. This activity is dependent on Fe as well as on residues predicted to be involved in Fe(II) co-ordination. The present results demonstrate that ALKBH4 represents an active Fe(II)/2OG-dependent decarboxylase and suggest that the cysteine cluster is involved in processes other than Fe co-ordination.
Assuntos
Carboxiliases/química , Dioxigenases/química , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Homólogo AlkB 4 da Lisina Desmetilase , Motivos de Aminoácidos , Carboxiliases/genética , Domínio Catalítico , Dioxigenases/genética , Dioxigenases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Mutação , Espectrofotometria UltravioletaRESUMO
Six-coordinated heme groups are involved in a large variety of electron transfer reactions because of their ability to exist in both the ferrous (Fe(2+)) and ferric (Fe(3+)) state without any large differences in structure. Our studies on hemes coordinated by two histidines (bis-His) and hemes coordinated by histidine and methionine (His-Met) will be reviewed. In both of these coordination environments, the heme core can exhibit ferric low spin (electron paramagnetic resonance EPR) signals with large g(max) values (also called Type I, highly anisotropic low spin, or highly axial low spin, HALS species) as well as rhombic EPR (Type II) signals. In bis-His coordinated hemes rhombic and HALS envelopes are related to the orientation of the His groups with respect to each other such that (i) parallel His planes results in a rhombic signal and (ii) perpendicular His planes results in a HALS signal. Correlation between the structure of the heme and its ligands for heme with His-Met axial ligation and ligand-field parameters, as derived from a large series of cytochrome c variants, show, however, that for such a combination of axial ligands there is no clear-cut difference between the large g(max) and the "small g-anisotropy" cases as a result of the relative Met-His arrangements. Nonetheless, a new linear correlation links the average shift delta of the heme methyl groups with the g(max) values.