Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomolecules ; 13(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36671421

RESUMO

Cadmium (Cd) is a toxic metal for the human organism and for all ecosystems. Cd is naturally found at low levels; however, higher amounts of Cd in the environment result from human activities as it spreads into the air and water in the form of micropollutants as a consequence of industrial processes, pollution, waste incineration, and electronic waste recycling. The human body has a limited ability to respond to Cd exposure since the metal does not undergo metabolic degradation into less toxic species and is only poorly excreted. The extremely long biological half-life of Cd essentially makes it a cumulative toxin; chronic exposure causes harmful effects from the metal stored in the organs. The present paper considers exposure and potential health concerns due to environmental cadmium. Exposure to Cd compounds is primarily associated with an elevated risk of lung, kidney, prostate, and pancreatic cancer. Cd has also been linked to cancers of the breast, urinary system, and bladder. The multiple mechanisms of Cd-induced carcinogenesis include oxidative stress with the inhibition of antioxidant enzymes, the promotion of lipid peroxidation, and interference with DNA repair systems. Cd2+ can also replace essential metal ions, including redox-active ones. A total of 12 cancer types associated with specific genes coding for the Cd-metalloproteome were identified in this work. In addition, we summarize the proper treatments of Cd poisoning, based on the use of selected Cd detoxifying agents and chelators, and the potential for preventive approaches to counteract its chronic exposure.


Assuntos
Cádmio , Neoplasias , Masculino , Humanos , Cádmio/metabolismo , Ecossistema , Antioxidantes/farmacologia , Estresse Oxidativo , Reparo do DNA , Neoplasias/induzido quimicamente
2.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681261

RESUMO

The good chelating properties of hydroxypyrone (HPO) derivatives towards oxidovanadium(IV) cation, VIVO2+, constitute the precondition for the development of new insulin-mimetic and anticancer compounds. In the present work, we examined the VIVO2+ complex formation equilibria of two kojic acid (KA) derivatives, L4 and L9, structurally constituted by two kojic acid units linked in position 6 through methylene diamine and diethyl-ethylenediamine, respectively. These chemical systems have been characterized in solution by the combined use of various complementary techniques, as UV-vis spectrophotometry, potentiometry, NMR and EPR spectroscopy, ESI-MS spectrometry, and DFT calculations. The thermodynamic approach allowed proposing a chemical coordination model and the calculation of the complex formation constants. Both ligands L4 and L9 form 1:1 binuclear complexes at acidic and physiological pHs, with various protonation degrees in which two KA units coordinate each VIVO2+ ion. The joined use of different techniques allowed reaching a coherent vision of the complexation models of the two ligands toward oxidovanadium(IV) ion in aqueous solution. The high stability of the formed species and the binuclear structure may favor their biological action, and represent a good starting point toward the design of new pharmacologically active vanadium species.

3.
Semin Cancer Biol ; 76: 27-37, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153434

RESUMO

Gold nanoparticles (AuNPS) represent one of the most studied classes of nanomaterials for biomedical applications, especially in the field of cancer research. In fact, due to their unique properties and high versatility, they can be exploited under all aspects connected to cancer management, from early detection to diagnosis and treatment. AuNPs have thus been tested with amazing results as biosensors, contrast agents, therapeutics. Their importance as potent theranostics is undoubted, but the translation to clinical practice has been hampered by a series of aspects, such as the unclear toxicity in humans and the lack of thorough studies on reliable animal models. Still, their potential action is so appealing and the results so impressive that an outstanding number of papers is being published every year, with the consequence that any review on this topic becomes obsolete within a few months. Here we would like to report the latest findings on AuNPs research addressing all their functions as theranostic agents.


Assuntos
Ouro , Nanopartículas Metálicas , Neoplasias/diagnóstico , Neoplasias/terapia , Nanomedicina Teranóstica/tendências , Animais , Humanos , Nanomedicina Teranóstica/métodos
4.
Semin Cancer Biol ; 76: 17-26, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34182143

RESUMO

Although thousands of different nanoparticles (NPs) have been identified and synthesized to date, well-defined, consistent guidelines to control their exposure and evaluate their potential toxicity have yet to be fully established. As potential applications of nanotechnology in numerous fields multiply, there is an increased awareness of the issue of nanomaterials' toxicity among scientists and producers managing them. An updated inventory of customer products containing NPs estimates that they currently number over 5.000; ten years ago, they were one fifth of this. More often than not, products bear no information regarding the presence of NPs in the indicated list of ingredients or components. Consumers are therefore largely unaware of the extent to which nanomaterials have entered our lives, let alone their potential risks. Moreover, the lack of certainties with regard to the safe use of NPs is curbing their applications in the biomedical field, especially in the diagnosis and treatment of cancer, where they are performing outstandingly but are not yet being exploited as much as they could. The production of radical oxygen species is a predominant mechanism leading to metal NPs-driven carcinogenesis. The release of particularly reactive metal ions capable of crossing cell membranes has also been implicated in NPs toxicity. In this review we discuss the origin, behavior and biological toxicity of different metal NPs with the aim of rationalizing related health hazards and calling attention to toxicological concerns involved in their increasingly widespread use.


Assuntos
Nanopartículas Metálicas/toxicidade , Animais , Humanos
5.
Chemistry ; 26(57): 13072-13084, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32488947

RESUMO

Islet amyloid polypeptide (IAPP) is a hormone co-secreted with insulin and zinc from pancreatic ß-cells. To overcome the low solubility of human IAPP, we characterized zinc complexes species formed with 1) a mutated form of rat-IAPP(1-37; R18 H) able to mimic the human IAPP, 2) the r-IAPP(1-37) and the IAPP(1-8) fragment. Stoichiometry, speciation and coordination features of zinc(II) complexes were unveiled by ESI-MS, potentiometry and NMR measurements combined with DFT and free-energy simulations. Mononuclear species start to form around pH 6; Zn2+ binds both His18 and N-amino terminus in rat-IAPP(1-37; R18 H). The in silico study allows us to assess not only a structured turn compact domain in r-IAPP(1-37) and r-IAPP(1-37; R18 H) featured by a different free energy barrier for the transition from the compact to elongated conformation upon the coordination of Zn2+ , but also to bring into light a coordination shell further stabilized by noncovalent interactions.


Assuntos
Zinco/química , Amiloide , Animais , Simulação por Computador , Complexos de Coordenação , Humanos , Insulina , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Ratos
6.
J Inorg Biochem ; 193: 152-165, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30769225

RESUMO

This work presents the simple and low cost synthesis of a new tripodal ligand, in which three units of kojic acid are coupled to a tris(2-aminoethyl)amine (tren) backbone molecule. The protonation equilibria, together with the complex formation equilibria of this ligand with Fe3+, Al3+, Cu2+ and Zn2+ ions were studied. The complementary use of potentiometric, spectrophotometric and NMR techniques, and of Density Functional Theory (DFT) calculations, has allowed a thorough characterization of the different species involved in equilibrium. The stability of the formed complexes with Fe3+ and Al3+ are high enough to consider the new ligand for further studies for its clinical applications as a chelating agent. Biodistribution studies were carried out to assess the capacity the ligand for mobilization of gallium in 67Ga-citrate injected mice. These studies demonstrated that this ligand efficiently chelates the radiometal in our animal model, which suggests that it can be a promising candidate as sequestering agent of iron and other hard trivalent metal ions. Furthermore, the good zinc complexation capacity appears as a stimulating result taking into a potential use of this new ligand in analytical chemistry as well as in agricultural and environmental applications.


Assuntos
Quelantes de Ferro/farmacologia , Piranos/farmacologia , Pironas/farmacologia , Alumínio/química , Animais , Cobre/química , Teoria da Densidade Funcional , Feminino , Radioisótopos de Gálio/química , Ferro/química , Quelantes de Ferro/síntese química , Quelantes de Ferro/farmacocinética , Camundongos , Modelos Químicos , Piranos/síntese química , Piranos/farmacocinética , Pironas/síntese química , Pironas/farmacocinética , Distribuição Tecidual , Zinco/química
7.
J Med Chem ; 62(13): 5923-5943, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-30735392

RESUMO

Silver has no biological role, and it is particularly toxic to lower organisms. Although several silver formulations employed in medicine in the past century are prescribed and sold to treat certain medical conditions, most of the compounds, including those showing outstanding properties as antimicrobial or anticancer agents, are still in early stages of assessment, that is, in vitro studies, and may not make it to clinical trials. Unlike other heavy metals, there is no evidence that silver is a cumulative poison, but its levels can build up in the body tissues after prolonged exposure leading to undesired effects. In this review, we deal with the journey of silver in medicine going from the alternative or do-it-yourself drug to scientific evidence related to its uses. The many controversies push scientists to move toward a more comprehensive understanding of the mechanisms involved.


Assuntos
Prata/farmacologia , Prata/uso terapêutico , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/toxicidade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/toxicidade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Bactérias/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/toxicidade , Fungos/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Vírus/efeitos dos fármacos
8.
J Trace Elem Med Biol ; 44: 151-160, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28965571

RESUMO

Ni(II) stimulates innate immunity via the direct binding to human Toll Like Receptor 4 (hTLR4), the bacterial lypopolysaccharide receptor. The binding is specific for humans and causes nickel contact allergy. The protein sequence analysis of hTLR4 revealed that the ectodomain, the region supposed to coordinate the metal ions, contains a histidine-rich motif that is not conserved among all organisms. To elucidate the role of each histidine residue on the protein-nickel binding, we examined the formation of Ni(II) complexes with the model peptide NH2-FQHSNRKQMSERSVFRSRRNRIYRDISHTHTR-COO-, which encompasses the sequence 429-460 of hTLR4. The amino acid sequence of the peptide has been modified by the substitution of some selected lipophilic residues (Leu and Phe) with hydrophilic residues (Arg), aiming at increasing the peptide hydro solubility of the protein fragment. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) measurements demonstrate that the non-conserved histidines in the ectodomain cooperate in metal coordination and consequently enable the activation of the molecular mechanism of nickel hypersensitivity reaction.


Assuntos
Modelos Biológicos , Níquel/metabolismo , Peptídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/química , Prótons , Espectrofotometria Ultravioleta , Receptor 4 Toll-Like/química
9.
J Inorg Biochem ; 164: 49-58, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27637368

RESUMO

A decapeptide, DEHGTAVMLK (DP1), and its random scrambled version, THMVLAKGED (DP2), have been studied for their interactions with manganese. The amino acid composition of the peptides was selected to include the majority of the most prevalent amino acids present in a Deinococcus radiodurans bacterium cell-free extract that contains components capable of conferring extreme resistance to ionizing radiation. The extract appears to be rich in Mn(II) complexes which seem to be responsible for protecting proteins from Reactive Oxygen Species damage. We focused our attention on the interaction of the decapeptides with Mn(II) ion with the aim of obtaining information on the possible complexes formed, by using NMR, EPR, and ESI-MS techniques.


Assuntos
Antioxidantes/química , Deinococcus/química , Manganês/química , Oligopeptídeos/química , Tolerância a Radiação
10.
Int J Mol Sci ; 17(8)2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27490533

RESUMO

Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang-actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo ("wild-type", wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein-copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1-17) and AcAng(1-17), which encompass the sequence 1-17 of angiogenin (QDNSRYTHFLTQHYDAK-NH2), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides.


Assuntos
Complexos de Coordenação/farmacologia , Cobre/metabolismo , Neuroblastoma/patologia , Fragmentos de Peptídeos/farmacologia , Ribonuclease Pancreático/metabolismo , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Concentração de Íons de Hidrogênio , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Ligação Proteica , Ribonuclease Pancreático/química , Espectrofotometria Ultravioleta
11.
J Trace Elem Med Biol ; 38: 10-18, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27365273

RESUMO

An excessive amount of iron may become extremely toxic both for its ability to generate reactive oxygen species, and for the lack of regulatory mechanisms for iron excretion in humans. Chelation therapy has been introduced in clinical practice in the 1970's to defend thalassemia patients from the effects of iron overload and it has dramatically changed both life expectancy and quality of life. The disadvantages of the drugs in clinical use make the research for new, more suitable iron chelating agents, urgent. This review defines the requirements of an iron chelator, then points out the principal chemical features of the iron chelators in use. Finally, a survey on the last ten years of the literature relative to iron chelators is done, and the most interesting ligands are presented, with particular emphasis to those that reached clinical trials.


Assuntos
Terapia por Quelação , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Humanos , Quelantes de Ferro/administração & dosagem , Quelantes de Ferro/química , Sobrecarga de Ferro/metabolismo
12.
Dalton Trans ; 45(12): 5151-61, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26885710

RESUMO

A protected 30-amino acid fragment, Acetyl-SPDEKHELMIQLQKLDYTVGFCGDGANDCG-Amide, Acetyl-Ser-Pro-Asp-Glu-Lys-His-Glu-Leu-Met-Ile-Gln-Leu-Gln-Lys-Leu-Asp-Tyr-Thr-Val-Gly-Phe-Cys-Gly-Asp-Gly-Ala-Asn-Asp-Cys-Gly-Amide, encompassing the sequence from residues 1164 to 1193 in the encoded protein from Parkinson's disease gene Park9 (YPk9), was studied for manganese and zinc binding. Manganese exposure is considered to be an environmental risk factor connected to PD and PD-like syndrome. Research into the genetic and environmental risk factors involved in disease susceptibility has recently uncovered a link existing between Park9 and manganese. It seems that manganese binding to Park9 (YPk9) protein is involved in the detoxification mechanism exerted by this protein against manganese toxicity. In this study, we used potentiometric, mono- and bi-dimensional (TOCSY, HSQC) NMR, EPR and ESI-MS measurements to analyze complex formation and metal binding sites in the peptide fragment. Presumably octahedral species, in which the Mn(II) ion was bound to oxygens of the carboxyl groups of Glu and Asp, and species where the involvement of sulfur from Cys and nitrogen from His residues, depending on the metal to ligand molar ratio, were detected for manganese coordination. Structural changes in the 30-amino acid fragment were triggered by Zn(II) interaction. A general decrease in the intensity of NMR signals was detected, suggesting the occurrence of chemical exchange among some coordinated species in an intermediate NMR timescale. The coordination may involve both S and N donor atoms from cysteine as well as histidine residues, together with O donor atoms from glutamic and aspartic residues.


Assuntos
Manganês/química , Peptídeos/química , Zinco/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Potenciometria , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray
13.
J Inorg Biochem ; 151: 94-106, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26281974

RESUMO

High stability of the complexes formed at physiological pH is one of the basic requisites that a good iron chelator must possess. At the same time the chelating agent must be selective toward iron, i.e., the stability of iron complexes must be significantly higher than that of the complexes formed with essential metal ions, in order that these last ones do not perturb iron chelation. In the frame of our research on iron chelators we have designed and synthesized a series of tetradentate derivatives of kojic acid, and examined their binding properties toward Fe(3+) and Al(3+). In this paper, for a characterization of the behavior of the proposed iron chelating agents in biological fluids, their complex formation equilibria with copper(II) and zinc(II) ions have been fully characterized together with a speciation study, showing the degree at which the iron chelators interfere with the homeostatic equilibria of these two essential metal ions.


Assuntos
Cobre/química , Quelantes de Ferro/química , Pironas/química , Zinco/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Difração de Raios X
14.
PLoS One ; 10(7): e0133050, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26192307

RESUMO

A number of reports have appeared in literature calling attention to the depletion of essential metal ions during chelation therapy on ß-thalassaemia patients. We present a speciation study to determine how the iron chelators used in therapy interfere with the homeostatic equilibria of essential metal ions. This work includes a thorough analysis of the pharmacokinetic properties of the chelating agents currently in clinical use, of the amounts of iron, copper and zinc available in plasma for chelation, and of all the implied complex formation constants. The results of the study show that a significant amount of essential metal ions is complexed whenever the chelating agent concentration exceeds the amount necessary to coordinate all disposable iron--a frequently occurring situation during chelation therapy. On the contrary, copper and zinc do not interfere with iron chelation, except for a possible influence of copper on iron speciation during deferiprone treatment.


Assuntos
Quelantes de Ferro/uso terapêutico , Metais/metabolismo , Talassemia beta/tratamento farmacológico , Cobre/sangue , Cobre/química , Cobre/metabolismo , Deferiprona , Desferroxamina/química , Desferroxamina/uso terapêutico , Humanos , Íons/química , Quelantes de Ferro/química , Metais/sangue , Metais/química , Piridonas/química , Piridonas/uso terapêutico , Albumina Sérica/química , Albumina Sérica/metabolismo , Zinco/sangue , Zinco/química , Zinco/metabolismo , Talassemia beta/patologia
15.
Toxicol Appl Pharmacol ; 288(1): 33-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26164860

RESUMO

Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans.


Assuntos
Brônquios/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Compostos de Tungstênio/toxicidade , Animais , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Transplante de Neoplasias , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos
16.
ScientificWorldJournal ; 2014: 656201, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24790577

RESUMO

P1D2E3K4H5E6L7 (PK9-H), a fragment of Ypk9, the yeast homologue of the human Park9 protein, was studied for its coordination abilities towards Ni(II) and Cu(II) ions through mono- and bi-dimensional NMR techniques. Both proteins are involved in the transportation of metal ions, including manganese and nickel, from the cytosol to the lysosomal lumen. Ypk9 showed manganese detoxification role, preventing a Mn-induced Parkinsonism (PD) besides mutations in Park9, linked to a juvenile form of the disease. Here, we tested PK9-H with Cu(II) and Ni(II) ions, the former because it is an essential element ubiquitous in the human body, so its trafficking should be strictly regulated and one cannot exclude that Ypk9 may play a role in it, and the latter because, besides being a toxic element for many organisms and involved in different pathologies and inflammation states, it seems that the protein confers protection against it. NMR experiments showed that both cations can bind PK9-H in an effective way, leading to complexes whose coordination mode depends on the pH of the solution. NMR data have been used to build a model for the structure of the major Cu(II) and Ni(II) complexes. Structural changes in the conformation of the peptide with organized side chain orientation promoted by nickel coordination were detected.


Assuntos
Cátions , Cobre/química , Níquel/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , ATPases Translocadoras de Prótons/química , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica
17.
Dalton Trans ; 43(7): 2764-71, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24169691

RESUMO

The FQH431SNLKQMSEFSVFLSLRNLIYLDISH456TH458TR fragment, containing three histidine residues, the conserved H431 and the non-conserved H456 and H458, located from 429 to 460 amino acid residues in the C-terminal portion of human Toll-like-receptor 4 (hTLR4), which is directly activated by nickel, a well known contact allergen, has been tested for Ni(II) binding. The complex formation capability of the 32-amino acid sequence with Ni(II) ions has been followed by potentiometric, UV-Vis, CD, MS and NMR measurements. Ni(II) is able to bind to all three histidines by forming macrocycle complexes at low and physiological pH. From pH 9 on, a 4N diamagnetic species (N(im), 3N(am)(-)) with the participation of an imidazole nitrogen and three deprotonated nitrogens from His28, Ser27 and Ile26 amides from the backbone of the model peptide has been determined. From the NMR results it was possible to determine that His28, which mimics the H456 residue in the protein, together with the environment around it, was mainly involved in the binding.


Assuntos
Dermatite Alérgica de Contato/etiologia , Níquel/efeitos adversos , Níquel/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor 4 Toll-Like/química , Sítios de Ligação , Dermatite Alérgica de Contato/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Receptor 4 Toll-Like/metabolismo
18.
Molecules ; 18(10): 12396-414, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24108401

RESUMO

Coordination of proteins and peptides to metal ions is known to affect their properties, often by a change in their structural organization. Side chains of the residues directly involved in metal binding or very close to the coordination centre may arrange themselves around it, in such a way that they can, for instance, disrupt the protein functions or stabilize a metal complex by shielding it from the attack of water or other small molecules. The conformation of these side chains may be crucial to different biological or toxic processes. In our research we have encountered such behaviour in several cases, leading to interesting results for our purposes. Here we give an overview on the structural changes involving peptide side chains induced by Ni(II) coordination. In this paper we deal with a number of peptides, deriving from proteins containing one or more metal coordinating sites, which have been studied through a series of NMR experiments in their structural changes caused by Ni(II) complexation. Several peptides have been included in the study: short sequences from serum albumin (HSA), Des-Angiotensinogen, the 30-amino acid tail of histone H4, some fragments from histone H2A and H2B, the initial fragment of human protamine HP2 and selected fragments from prion and Cap43 proteins. NMR was the election technique for gathering structural information. Experiments performed for this purpose included 1D ¹H and ¹³C, and 2D HSQC, COSY, TOCSY, NOESY and ROESY acquisitions, which allowed the calculation of the Ni(II) complexes structural models.


Assuntos
Complexos de Coordenação/química , Metaloproteínas/química , Níquel/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Histidina/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica
19.
Dalton Trans ; 42(46): 16293-301, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24065052

RESUMO

The binding of Mn(II) and Co(II) ions to a multi-histidinic peptide, the three repeats (T1R2S3R4S5H6T7S8E9G10)3 portion of Cap43 protein, has been studied. Potentiometric measurements have been used to investigate the protonation equilibria and stoichiometry of the species obtained in a wide range of pH and at a 1 : 1 ligand-to-metal molar ratio. NMR, UV-visible and EPR spectroscopy techniques have been used to investigate the role of multi-histidinic and glutamate sites in coordinating metal ions. (1)H-(1)H TOCSY, (1)H-(13)C HSQC multidimensional NMR techniques were performed to understand the details of metal binding sites and the conformational behaviour of the peptide. The effects of the peptide titration with the two metals have been followed by paramagnetic selective line-broadening in the 1D NMR spectra and the signals' disappearance in the 2D (1)H-(13)C HSQC and (1)H-(1)H TOCSY. Both ions showed common binding donor atoms: the main manganese and cobalt binding centre of the peptide fragment is associated with histidine and glutamate residues. The specific perturbation of NMR resonances indicated that the coordination involves imidazole Nε of histidine and carboxyl γ-O of glutamate residue. All the three imidazole Nε of His6, His16 and His26, as well as carboxyl γ-O of Glu9, Glu19 and Glu29, in an octahedral arrangement are involved in the coordination in the physiological pH range. The involvement of hydroxyl γ-O from the threonine (or serine) side chain can also be observed. Manganese and cobalt complexation induces important structural changes within the C-terminal portion of the ligand, constraining it to leave its disordered conformation. A model of the structure of manganese and cobalt species can be obtained from our data.


Assuntos
Cobalto/química , Histidina/química , Manganês/química , Sequência de Aminoácidos , Complexos de Coordenação/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Íons/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
20.
Biochemistry ; 52(24): 4168-83, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23692052

RESUMO

Occupational and/or environmental exposure to nickel has been implicated in various types of cancer, and in vitro exposure to nickel compounds results in the accumulation of Ni(II) ions in cells. One group of major targets of Ni(II) ions inside the cell consists of Fe(II)- and αKG-dependent dioxygenases. Using JMJD2A and JMJD2C as examples, we show that the JMJD2 family of histone demethylases, which are products of putative oncogenes as well as Fe(II)- and αKG-dependent dioxygenases, are highly sensitive to inhibition by Ni(II) ions. In this work, X-ray absorption spectroscopy (XAS) has been used to investigate the Fe(II) active site of truncated JMJD2A and JMJD2C (1-350 amino acids) in the presence and absence of αKG and/or substrate to obtain mechanistic details of the early steps in catalysis that precede O2 binding in histone demethylation by the JMJD2 family of histone demethylases. Zinc K-edge XAS has been performed on the resting JMJD2A (with iron in the active site) to confirm the presence of the expected structural zinc site. XAS of the Ni(II)-substituted enzymes has also been performed to investigate the inhibition of these enzymes by Ni(II) ions. Our XAS results indicate that the five-coordinate Fe(II) center in the resting enzyme is retained in the binary and ternary complexes. In contrast, the Ni(II) center is six-coordinate in the resting enzyme and binary and ternary complexes. XAS results indicate that both Fe(II) and Ni(II) bind αKG in the binary and ternary complexes. The electron density buildup that is observed at the Fe(II) center in the presence of αKG and substrate is not observed at the Ni(II) center. Thus, both electronic and steric factors are responsible for Ni-induced inhibition of the JMJD2 family of histone demethylases. Ni-induced inhibition of these enzymes may explain the alteration of the epigenetic mechanism of gene expression that is responsible for Ni-induced carcinogenesis.


Assuntos
Histona Desmetilases/química , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/química , Níquel/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Histonas/química , Humanos , Concentração Inibidora 50 , Íons , Ferro/química , Modelos Químicos , Modelos Estatísticos , Conformação Molecular , Oxigênio/química , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Espectroscopia por Absorção de Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA