Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150616, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39232456

RESUMO

Cisplatin (DDP) resistance in advanced stages of ovarian cancer significantly reduces survival rates. Mitochondria may serve as a potential therapeutic target for ovarian cancer. Pal-pHK-pKV is a mitochondrial targeting peptide synthesized by supramolecular assembly. Our study aims to investigate whether Pal-pHK-pKV serves as a useful strategy to reverse DDP resistance in ovarian cancer. Subcutaneous tumor implantation of the DDP-resistant ovarian cancer cell line A2780CP was conducted in nude mice, and drugs were administered intraperitoneally to compare the inhibitory effects of Pal-pHK-pKV and DDP on A2780CP cells in vivo. Combination index values were calculated for various concentrations of DDP and Pal-pHK-pKV to determine the optimal combination concentration. Mitochondrial membrane potential, cytochrome C distribution and immunofluorescence were also measured. Our studies demonstrated that Pal-pHK-pKV treatment reduced the proliferation, invasion and metastasis of ovarian cancer cells and impaired mitochondrial function. Furthermore, the combination of Pal-pHK-pKV and DDP exhibited a synergistic effect. Mechanistically, Pal-pHK-pKV can impair mitochondrial function, reduce mitochondrial membrane potential and release ROS. On the other hand, Pal-pHK-pKV can affect ERK pathway activation and inhibit tumor development. In conclusion, the mitochondria-specific amphiphilic peptide Pal-pHK-pKV provides a novel approach for treating ovarian cancer and may potentially overcome DDP drug resistance.

2.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296512

RESUMO

Nicotine hydrochloride (NCT) has a good control effect on hemiptera pests, but its poor interfacial behavior on the hydrophobic leaf leads to few practical applications. In this study, a vesicle solution by the eco-friendly surfactant, sodium diisooctyl succinate sulfonate (AOT), was prepared as the pesticide carrier for NCT. The physical chemical properties of NCT-loaded AOT vesicles (NCT/AOT) were investigated by techniques such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The results showed that the pesticide loading and encapsulation efficiency of NCT/AOT were 10.6% and 94.8%, respectively. The size of NCT/AOT vesicle was about 177 nm. SAXS and surface tension results indicated that the structure of the NCT/AOT vesicle still existed with low surface tension even after being diluted 200 times. The contact angle of NCT/AOT was always below 30°, which means it could wet the surface of the cabbage leaf well. Consequently, NCT/AOT vesicles could effectively reduce the bounce of pesticide droplets. In vitro release experiments showed that NCT/AOT vesicles had sustained release properties; 60% of NCT in NCT/AOT released after 24 h, and 80% after 48 h. Insecticidal activity assays against aphids revealed that AOT vesicles exhibited insecticidal activity and could have a synergistic insecticidal effect with NCT after the loading of NCT. Thus, the NCT/AOT vesicles significantly improved the insecticidal efficiency of NCT, which has potential application in agricultural production activities.


Assuntos
Inseticidas , Surfactantes Pulmonares , Preparações de Ação Retardada/química , Inseticidas/farmacologia , Nicotina/farmacologia , Espalhamento a Baixo Ângulo , Sódio , Succinatos/química , Tensoativos/farmacologia , Tensoativos/química , Difração de Raios X
3.
Ann Transl Med ; 10(10): 570, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35722364

RESUMO

Background: Peripheral T-cell lymphomas (PTCL) are aggressive lymphomas with poor prognosis, and therefore, there is a pressing need to explore new targets or compounds. Mitochondria may serve as a potential therapeutic target for PTCL. A designed positively-charged segment (pKV) is anchored to the specific 15 amino acid sequence (MIASHLLAYFFTELN) to yield a cell-penetrating peptide (pHK-pKV) and a lipid chain (Pal) is conjugated to the N-terminus of pHK-pKV (Pal-pHK-pKV) are bioactive amphiphilic peptide assemblies targeting the interaction between mitochondrial voltage dependent anion channel 1 (VDAC1) and hexokinase II (HKII). Methods: PTCL cell line H9 was treated with Pal-pHK-pKV and pHK-pKV, respectively. Cell proliferation in each group was measured by detecting cell viability and the corresponding marker Ki-67. Apoptosis was detected by immunofluorescence, flow cytometry and western blot. We also measured mitochondrial membrane potential, adenosine triphosphate (ATP) production, the cytochrome c distribution and the expression levels of B cell lymphoma 2 (BCL-2) and BCL-2 associated X protein (BAX). Western blot was used to detect the activation of the extracellular regulated protein kinases (ERK) signaling pathway. Results: Pal-pHK-pKV and pHK-pKV with 20 µM blocked the interaction between VDAC1 and HKII, and detached HKII from mitochondria, which depolarized the mitochondrial membrane potential, induced mitochondria dysfunction, and decreased ATP production. The decreased ATP subsequently inhibited the activation of the ERK/BCL-2 pathway and increased the BAX/BCL-2 ratio. Cytochrome c was then released from the mitochondria and induced capase-3 activation and subsequently apoptosis. Additionally, decreased ATP induced the expression of FAS and then apoptosis. Conclusions: Mitochondria specific peptide amphiphiles induce mitochondrial dysfunction and provide a new approach for the treatment of PTCL.

4.
ACS Appl Mater Interfaces ; 13(30): 35281-35293, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309373

RESUMO

Targeted therapies of melanoma are of urgent need considering the resistance of this aggressive type of cancer to chemotherapeutics. The voltage-dependent anion channel 1 (VDAC1)-hexokinase-II (HK-II) complex is an emerging target for novel anticancer therapies based on induced mitochondria-mediated apoptosis. The low cell membrane permeability of the anticancer 12-mer peptide N-Ter (RDVFTKGYGFGL) derived from the N-terminal fragment of the VDAC1 protein impedes the intracellular targeting. Here, novel multiblock VDAC1-derived cationic amphiphilic peptides (referred to as Pal-N-Ter-TAT, pFL-N-Ter-TAT, and Pal-pFL-N-Ter-TAT) are designed with a self-assembly propensity and cell-penetrating properties. The created multiblock amphiphilic peptides of partial α-helical conformations form nanoparticles of ellipsoid-like shapes and are characterized by enhanced cellular uptake. The amphiphilic peptides can target mitochondria and dissociate the VDAC1-HK-II complex at the outer mitochondrial membrane, which result in mitochondria-mediated apoptosis. The latter is associated with decrease of the mitochondrial membrane potential, cytochrome c release, and changes of the expression levels of the apoptotic proteins in A375 melanoma cells. Importantly, the mitochondrial VDAC1-derived amphiphilic peptides have a comparable IC50 value for melanoma cells to a small-molecule drug, sorafenib, which has been previously used in clinical trials for melanoma. These results demonstrate the potential of the designed peptide constructs for efficient melanoma inhibition.


Assuntos
Antineoplásicos/farmacologia , Hexoquinase/metabolismo , Peptídeos/farmacologia , Tensoativos/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos
5.
J Agric Food Chem ; 68(45): 12549-12557, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33112140

RESUMO

Recently, innovations of nano/microcarrier formulations have been focused on improving application efficiencies and retention time. In this study, a water-based 2.5% λ-cyhalothrin (LC) microcapsule suspension (CS) was developed by orthogonal test with biodegradable and adhesive polydopamine (PDA) microcapsules (MCs) as carriers. The obtained LC-PDA CS had good suspension properties, flow behavior, storage stability, and rheological properties. LC-PDA CS had higher retention, wettability, and decreased rainwater washing out on the leaves than commercial CS. LC-PDA CS displayed higher insecticidal activity against Lipaphis erysimi compared to commercial CS. LC-PDA CS reduced the toxicity of LC to the aquatic organism Danio rerio compared to LC. The above results demonstrated that LC-PDA CS would be eco-friendly water-based pesticides carrier system for prolonging the retention time on target leaf and reducing toxicity to aquatic organisms.


Assuntos
Composição de Medicamentos/métodos , Indóis/química , Inseticidas/química , Nitrilas/química , Polímeros/química , Piretrinas/química , Animais , Afídeos/efeitos dos fármacos , Afídeos/fisiologia , Portadores de Fármacos/química , Inseticidas/farmacologia , Nitrilas/farmacologia , Doenças das Plantas/parasitologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Piretrinas/farmacologia , Peixe-Zebra
6.
Chembiochem ; 21(17): 2467-2473, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32274877

RESUMO

Nanopores are original sensors employed for highly sensitive peptides/proteins detection. Herein, we describe the use of an aerolysin nanopore to identify two similar model peptides, YEQYEQQDDDRQQQ (YEQ2Q3) and QDDDRQQQYEQYEQ (Q3YEQ2), with the same amino acid composition but different sequences. All-atom molecular dynamics (MD) simulations reveal that YEQ2Q3 possesses fewer hydrogen bonds and a more extended conformation than Q3YEQ2. These two peptides, which fold differently, exhibit obviously distinct mass-independent current blockades with characteristic dwell times when entering the aerolysin nanopore. Typically, at +60 mV, the statistical dwell time of 0.630±0.018 ms for peptide Q3YEQ2 is four times longer than the value of 0.160±0.001 ms for peptide YEQ2Q3, and yet peptide YEQ2Q3 induces ∼1.9 % larger blockade current amplitude than peptide Q3YEQ2. The obtained results show the remarkable potential of aerolysin nanopore for peptides/proteins identification, characterization, sequencing and also demonstrate that the mass identification of nonuniformly charged peptides/proteins by using the nanopore technique could be complicated by their folded structure and complex analyte-pore interaction.


Assuntos
Aminoácidos/química , Toxinas Bacterianas/química , Nanoporos , Peptídeos/química , Proteínas Citotóxicas Formadoras de Poros/química , Modelos Moleculares
7.
Langmuir ; 35(45): 14532-14542, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31635451

RESUMO

We report pH-responsive liquid crystalline lipid nanoparticles, which are dual-loaded by Brucea javanica oil (BJO) and doxorubicin hydrochloride (DOX) and display a pH-induced inverted hexagonal (pH = 7.4) to cubic (pH = 6.8) to emulsified microemulsion (pH = 5.3) phase transition with a therapeutic application in cancer inhibition. BJO is a traditional herbal medicine that strongly inhibits the proliferation and metastasis of various cancers. Doxorubicin is an antitumor drug, which prevents DNA replication and hampers protein synthesis through intercalation between the base pairs of the DNA helices. Its dose-dependent cardiotoxicity imposes the need for safe delivery carriers. Here, pH-induced changes in the structural and interfacial properties of designed multicomponent drug delivery (monoolein-oleic acid-BJO-DOX) systems are determined by synchrotron small-angle X-ray scattering and the Langmuir film balance technique. The nanocarrier assemblies display good physical stability in the studied pH range and adequate particle sizes and ζ-potentials. Their interaction with model lipid membrane interfaces is enhanced under acidic pH conditions, which mimic the microenvironment around tumor cells. In vitro cytotoxicity and apoptosis studies with BJO-DOX dual-loaded pH-switchable liquid crystalline nanoparticles are performed on the human breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line and MCF-7 cells with doxorubicin resistance (MCF-7/DOX), respectively. The obtained pH-sensitive nanomedicines exhibit enhanced antitumor efficacy. The performed preliminary studies suggest a potential reversal of the resistance of the MCF-7/DOX cells to DOX. These results highlight the necessity for further understanding the link between the established pH-dependent drug release profiles of the nanocarriers and the role of their pH-switchable inverted hexagonal, bicontinuous cubic, and emulsified microemulsion inner organizations for therapeutic outcomes.


Assuntos
Antibióticos Antineoplásicos/química , Brucea/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/química , Óleos de Plantas/química , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Tamanho da Partícula , Sementes/química , Propriedades de Superfície
8.
J Mater Chem B ; 7(30): 4706-4716, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31364685

RESUMO

Mitochondria-targeting peptides represent an emergent tool for cancer inhibition. Here supramolecular assemblies of novel amphiphilic cell-penetrating peptides for targeting cancer cell mitochondria are reported. The employed strategy aims at amplifying the apoptotic stimuli by weakening the mitochondrial VDAC1 (voltage-dependent anion channel-1)-hexokinase-II (HK-II) interaction. Peptide engineering is performed with the N-terminus of the HK-II protein, which binds to VDAC1. First, a designed positively charged segment (pKV) is anchored to the specific 15 amino acid sequence (MIASHLLAYFFTELN) to yield a cell-penetrating peptide (pHK-pKV). Second, a lipid chain (Pal) is conjugated to the N-terminus of pHK-pKV in order to enhance the intracellular delivery of the HK-II scaffold. The self-assembly properties of these two synthetic peptides are investigated by synchrotron small-angle X-ray scattering (BioSAXS) and cryogenic transmission electron (cryo-TEM) imaging, which evidence the formation of nanoassemblies of ellipsoid-like shapes. Circular dichroism (CD) spectroscopy demonstrates the induction of partial α-helical structures in the amphiphilic peptides. Confocal microscopy reveals the specific mitochondrial location of Pal-pHK-pKV assemblies in human non-small cell lung cancer (NSCLC) A549 cells. The cytotoxicity and apoptotic studies indicate the enhanced bioactivity of Pal-pHK-pKV self-assembled reservoirs, which cause massive A549 cell death with regard to pHK-pKV. Of significance, Pal-pHK-pKV treatment of non-cancerous NCM460 cells resulted in substantially lower cytotoxicity. The results demonstrate the potential of self-assembled lipo-peptide (HK-II-derived) conjugates as a promising strategy in cancer therapy.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Hexoquinase/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Células A549 , Morte Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/síntese química , Humanos , Lipídeos/química , Lipopeptídeos/síntese química , Lipopeptídeos/uso terapêutico , Neoplasias Pulmonares/patologia , Tensoativos/metabolismo
9.
Colloids Surf B Biointerfaces ; 173: 217-225, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296646

RESUMO

In this work, we used the small angle X-ray scattering (SAXS) method for controlled preparation of in situ forming sustained-release carriers for the antitumor drug bufalin (BUF), which has very poor solubility and a considerable cardiotoxicity in a non-encapsulated state. To that aim, we exploited the pseudo-ternary phase diagram of an oil(O)/surfactant(S)/water(W) system containing medium chain capric/caprylic triglycerides (MCT) and a co-surfactant blend of Macrogol (15)-hydroxystearate (Solutol HS 15) and sorbitan monooleate (Span 80). Two compositions with different oil contents (sample B and C) were selected from the microemulsion region of the phase diagram in order to study the effect of the aqueous environment on their structural behavior. A phase transition from a microemulsion (ME) to a liquid crystalline phase (LC) was established by SAXS upon progressive dilution. The drug bufalin (BUF) was encapsulated in the microemulsions with low viscosity, whereas the release of the drug occurred from the in situ generated lamellar liquid crystalline structures. The formulations were characterized by SAXS, dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo-TEM), rheology, drug loading and encapsulation efficiency, and in vitro release profiles. A correlation was suggested between the structures of the in situ phase-transition formed LCME formulations, the differences in their viscosities and drug release profiles. The performed cytotoxicity, cell apoptosis and pharmacokinetic experiments showed an enhanced bioavailability of BUF after encapsulation. These results suggest potential clinical applications for the obtained safe in situ phase-transition sustained-release formulations of BUF.


Assuntos
Antineoplásicos/química , Bufanolídeos/química , Preparações de Ação Retardada/química , Cristais Líquidos/química , Triglicerídeos/química , Células A549 , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Área Sob a Curva , Disponibilidade Biológica , Bufanolídeos/sangue , Bufanolídeos/farmacocinética , Caprilatos/química , Ácidos Decanoicos/química , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Emulsões , Hexoses/química , Humanos , Infusões Parenterais , Cinética , Transição de Fase , Polietilenoglicóis/química , Ratos , Ratos Wistar , Ácidos Esteáricos/química
10.
J Agric Food Chem ; 66(25): 6262-6268, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29847115

RESUMO

Microcapsule formulations have been highly desirable and widely developed for effective utilization of pesticides and environmental pollution reduction. However, commercial and traditional microcapsule formulations of λ-cyhalothrin (LC) were prepared by complicated synthesis procedures and thereby specific organic solvents were needed. In this work, LC was encapsulated into versatile, robust, and biodegradable polydopamine (PDA) microcapsules by self-polymerization of dopamine. LC-loaded PDA microcapsules were characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and thermogravimetric analysis measurements (TGA). LC-loaded PDA microcapsules have uniform morphology with nanoscale, decent LC loading content (>50.0% w/w), and good physicochemical stability and sustained release properties. The bioassay against housefly ( Musca domestica) showed that the bioactivity and long-term efficiency of LC-loaded PDA microcapsules was superior to that of the commercial formulation. All of these results demonstrated that LC-loaded PDA microcapsules could be applied as a commercial LC microcapsule formulation with fewer environmental side effects and higher effective delivery.


Assuntos
Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Indóis/química , Inseticidas/química , Polímeros/química , Animais , Cápsulas/química , Cápsulas/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Moscas Domésticas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Inseticidas/farmacologia
11.
J Agric Food Chem ; 66(5): 1067-1074, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29301083

RESUMO

Insecticide nicotine hydrochloride (NCT) was formulated as nanoparticles composed of chitosan (CS) and sodium tripolyphosphate (TPP) to undermine its adverse impacts on human health and reinforce its physicochemical stability. The study investigated the preparation and characterization of chitosan/tripolyphosphate nanoparticles (CS/TPP NPs) with good encapsulation efficiency (55%), uniform morphology, and physicochemical stability (45 days) through dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS) measurements. A bioassay against Musca domestica NCT CS/TPP NPs exhibited good bioactivity and thermal stability. The effect of the monovalent salt (NaCl) on manipulating the formation and size distribution of ionically cross-linked nanoparticles was demonstrated as well. The formulation of NCT CS/TPP NPs could be a utility candidate in public health and agriculture.


Assuntos
Quitosana , Química Verde , Inseticidas , Nanopartículas , Nicotina/análogos & derivados , Nicotina/química , Polifosfatos , Animais , Fenômenos Químicos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Difusão Dinâmica da Luz , Moscas Domésticas , Microscopia Eletrônica de Transmissão , Difração de Raios X
12.
Mater Sci Eng C Mater Biol Appl ; 78: 609-618, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576029

RESUMO

Bufalin (BF), a traditional Chinese medicine, exhibited inhibitory activities against a broad spectrum of tumor cells. The present study elaborates that bufalin was successfully encapsulated into the cavity of ß-cyclodextrin (ß-CD), which was determined by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The best reaction mole ratio of BF/ß-CD was 1:5. The solubilities of bufalin in water and phosphate buffer solution (pH=7.4) were increased up to 24 and 34 times after encapsulated into the cavity of ß-CD respectively. The inclusion efficiency (IE) and drug loading (DL) of bufalin in the inclusion complex were (94.22±0.85)% and (14.11±0.20)%, respectively. Then ß-CD conjugated with folic acid (FA) were further prepared and employed to improve the anti-tumor efficacy of inclusion complex. The in vitro dissolution and solubility study showed better values of inclusion complex and FA targeted inclusion complex than that of pure BF. Cytotoxicity experiments by using HCT116 cell line revealed that the antitumor efficiency of bufalin were enhanced more than two folds in the presence of ß-CD and folate conjugated ß-CD (FA-PEI-ß-CD), which demonstrated the potential application of ß-CD (FA-PEI-ß-CD) as delivery vehicles of bufalin for antitumor therapy.


Assuntos
Bufanolídeos/química , Antineoplásicos , Varredura Diferencial de Calorimetria , Ácido Fólico , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , beta-Ciclodextrinas
13.
Adv Colloid Interface Sci ; 249: 331-345, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28477868

RESUMO

The present work highlights recent achievements in development of nanostructured dispersions and biocolloids for drug delivery applications. We emphasize the key role of biological small-angle X-ray scattering (BioSAXS) investigations for the nanomedicine design. A focus is given on controlled encapsulation of small molecular weight phytochemical drugs in lipid-based nanocarriers as well as on encapsulation of macromolecular siRNA, plasmid DNA, peptide and protein pharmaceuticals in nanostructured nanoparticles that may provide efficient intracellular delivery and triggered drug release. Selected examples of utilisation of the BioSAXS method for characterization of various types of liquid crystalline nanoorganizations (liposome, spongosome, cubosome, hexosome, and nanostructured lipid carriers) are discussed in view of the successful encapsulation and protection of phytochemicals and therapeutic biomolecules in the hydrophobic or the hydrophilic compartments of the nanocarriers. We conclude that the structural design of the nanoparticulate carriers is of crucial importance for the therapeutic outcome and the triggered drug release from biocolloids.


Assuntos
Antineoplásicos/química , Portadores de Fármacos , Composição de Medicamentos/métodos , Nanopartículas/química , Compostos Fitoquímicos/química , Antineoplásicos/farmacologia , Coloides , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/metabolismo , Compostos Fitoquímicos/farmacologia , Plasmídeos/química , Plasmídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Colloids Surf B Biointerfaces ; 153: 310-319, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28285062

RESUMO

Sponge-type nanocarriers (spongosomes) are produced upon dispersion of a liquid crystalline sponge phase formed by self-assembly of an amphiphilic lipid in excess aqueous phase. The inner organization of the spongosomes is built-up by randomly ordered bicontinuous lipid membranes and their surfaces are stabilized by alginate chains providing stealth properties and colloidal stability. The present study elaborates spongosomes for improved encapsulation of Brucea javanica oil (BJO), a traditional Chinese medicine that may strongly inhibit proliferation and metastasis of various cancers. The inner structural organization and the morphology characteristics of BJO-loaded nanocarriers at varying quantities of BJO were determined by cryogenic transmission electron microscopy (Cryo-TEM), small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Additionally, the drug loading and drug release profiles for BJO-loaded spongosome systems also were determined. We found that the sponge-type liquid crystalline lipid membrane organization provides encapsulation efficiency rate of BJO as high as 90%. In vitro cytotoxicity and apoptosis study of BJO spongosome nanoparticles with A549 cells demonstrated enhanced anti-tumor efficiency. These results suggest potential clinical applications of the obtained safe spongosome formulations.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Brucea/química , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Nanopartículas/química , Óleos/administração & dosagem , Óleos/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Óleos/química , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície
15.
Colloids Surf B Biointerfaces ; 145: 95-103, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27137808

RESUMO

The hydrophilic drug Doxorubicin hydrochloride (DOX) paired with oleic acid (OA) was successfully incorporated into nanostructured lipid carriers (NLCs) by a high-pressure homogenization (HPH) method. Drug nanovehicles with proper physico-chemical characteristics (less than 200nm with narrow size distribution, spherical shape, layered internal organization, and negative electrical charge) were prepared and characterized by dynamic light scattering, zeta potential measurements, transmission electron microscopy, small-angle X-ray scattering and differential scanning calorimetry. The drug loading and entrapment efficiency of DOX-OA/NLCs were 4.09% and 97.80%, respectively. A pH-dependent DOX release from DOX-OA/NLCs, i.e., fast at pH 3.8 and 5.7 and sustained at pH 7.4, was obtained. A cytotoxicity assay showed that DOX-OA/NLCs had comparable cytotoxicity to pure DOX and were favorably taken up by HCT 116 cells. The intracellular distribution of DOX was also studied using a confocal laser scanning microscope. All of these results demonstrated that DOX-OA/NLCs could be a promising drug delivery system with tumor-specific DOX release for cancer treatment.


Assuntos
Doxorrubicina/química , Nanoestruturas/química , Ácido Oleico/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
16.
Colloids Surf B Biointerfaces ; 140: 74-82, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26741267

RESUMO

Bioavailability of baicalin (BAI), an example of traditional Chinese medicine, has been modified by loading into liposome. Several liposome systems of different composition i.e., lipid/cholesterol (L), long-circulating stealth liposome (L-PEG) and folate receptor (FR)-targeted liposome (L-FA) have been used as the drug carrier for BAI. The obtained liposomes were around 80 nm in diameter with proper zeta potentials about -25 mV and sufficient physical stability in 3 months. The entrapment efficiency and loading efficiency of BAI in the liposomes were 41.0-46.4% and 8.8-10.0%, respectively. The morphology details of BAI lipsosome systems i.e., formation of small unilamellar vesicles, have been determined by cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS). In vitro cytotoxicity of BAI liposomes against HeLa cells was evaluated by MTT assay. BAI loaded FR-targeted liposomes showed higher cytotoxicity and cellular uptake compared with non-targeted liposomes. The results suggested that L-FA-BAI could enhance anti-tumor efficiency and should be an effective FR-targeted carrier system for BAI delivery.


Assuntos
Flavonoides/química , Ácido Fólico/análogos & derivados , Lipossomos/química , Polietilenoglicóis/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Flavonoides/farmacocinética , Flavonoides/farmacologia , Receptores de Folato com Âncoras de GPI/antagonistas & inibidores , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Células HeLa , Humanos , Lipossomos/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Espalhamento a Baixo Ângulo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Difração de Raios X
17.
J Mater Chem B ; 3(39): 7734-7744, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264582

RESUMO

Multidrug delivery devices are designed to take advantage of the synergistic effects of anticancer agents in combination therapies. Here we report novel liquid crystalline self-assembled nanocarriers enhancing the activity of the phytochemical anticancer agent baicalin (BAI) in combination with Brucea javanica oil (BJO), which ensures safe formulations for clinical applications. Small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) evidenced the multicompartment, sponge-type nano-organization of the blank and multidrug-loaded liquid crystalline carriers. Physico-chemical stability of the sponge nanoparticles was achieved through PEGylation of the lipid membranes, which make up the drug nanocarriers. The proposed green nanotechnology for nanocarrier preparation by supramolecular self-assembly provided a multidrug encapsulation efficiency as high as 75%. The apoptosis study with the human lung carcinoma cell line A549 demonstrated improved efficacy of the multidrug delivery nanocarriers in comparison to the single-drug reservoirs. The obtained results evidenced the synergistic anticancer apoptotic effects of the multidrug-loaded nanosponge carriers and suggested the opportunity for in vivo translation towards the treatment of lung, gastrointestinal, and ovarian cancers.

18.
Langmuir ; 30(12): 3363-72, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24593673

RESUMO

The interactions among neutral polymer polyacrylamide (PAM) and the biosurfactant Surfactin and four betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SDDAB), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (STDAB), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SHDAB), and N-dodecyl-N,N-dimethyl-2-ammonio-acetate (C12BE), in phosphate buffer solution (PBS) have been studied by surface tension measurements, small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and rheological experiments. It has been confirmed that the length of alkyl chain is a key parameter of interaction between betaines and PAM. Differences in scattering contrast between X-ray and neutrons for surfactants and PAM molecules provide the opportunity to separately follow the changes of structure of PAM and surfactant aggregates. At concentrations of betaines higher than CMC (critical micelle concentration) and C2 (CMC of surfactant with the presence of polymer), spherical micelles are formed in betaines and betaines/PAM solutions. Transition from spherical to rod-like aggregates (micelles) has been observed in solutions of Surfactin and Surfactin/SDDAB (αSurfactin = 0.67 (molar fraction)) with addition of 0.8 wt % of PAM. The conformation change of PAM molecules only can be observed for Surfactin/SDDAB/PAM system. Viscosity values follow the structural changes suggested from scattering measurements i.e., gradually increases for mixtures PAM → Surfactin/PAM → Surfactin/SDDAB/PAM in PBS.


Assuntos
Resinas Acrílicas/química , Betaína/química , Tensoativos/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Tensão Superficial , Difração de Raios X
19.
Langmuir ; 29(34): 10648-57, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23865739

RESUMO

The interactions between the lipopeptide Surfactin and four betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SDDAB), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (STDAB), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SHDAB), and N-dodecyl-N,N-dimethyl-2-ammonio-acetate (C12BE) are studied by surface tension and small-angle neutron scattering (SANS). SDDAB, STDAB, and SHDAB have the same headgroup but different hydrophobic chains. C12BE has different headgroup but the same hydrophobic chain with SDDAB. According to the interfacial parameters calculated from surface tension, the synergism between Surfactin and betaine is relevant with the molecule structure of betaine and the mole ratio of them. For betaines, the optimum alkyl chain length (STDAB) and long enough separation between positive charge and negative charge in headgroup are responsible for highest synergetic interaction with Surfactin. The aggregates of individual Surfactin and the mixtures of Surfactin and sulfopropyl betaines are predicted to be spherical based on the packing parameter (pp) and the average packing parameter (P(av)), which is in close qualitative agreement with SANS data analysis, while Surfactin/C12BE forms ellipsoidal micelles due to the smaller headgroup of C12BE.


Assuntos
Betaína/química , Lipopeptídeos/química , Peptídeos Cíclicos/química , Tensoativos/química , Interações Medicamentosas , Estrutura Molecular
20.
Int J Pharm ; 450(1-2): 225-34, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23608200

RESUMO

Chemically modified tetracyclines (CMTs) have been reported to strongly inhibit proliferation and metastasis of various cancers, but their efficacy is restricted by poor water solubility. In the present study, a hydrophilic 4-dedimethylamino sancycline (CMT-3) loaded nanostructured lipid carrier (CMT-3/NLC) was produced by high pressure homogenization (HPH). The physical properties of CMT-3/NLC formulations were characterized by dynamic light scattering (DLS), high efficiency liquid chromatography (HPLC), atomic force microscopy (AFM), scanning electron microscopy (SEM), small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS) and wide-angle X-ray powder diffraction (XRD). The lipid and surfactant ingredients, as well as drug/lipid concentrations (m/m) were optimized to produce stable and sustained NLC formulations. In vitro cytotoxicity of CMT-3/NLC against HeLa cells was evaluated by MTT assay. The diameter of CMT-3/NLC was found to increase from 153.1±3.0 nm to a maximum of 168.5±2.0 nm after 30 days of storage, while the entrapment efficiency remained constant at >90%. CMT-3/NLC demonstrated a burst-sustained release profile in release media with different pH, a property attributed to the 3-dimensional structure of CMT-3/NLC. Cell uptake and localization studies indicated that NLC reached the cytoplasm and could thereby facilitate CMT-3 entry into HeLa cells.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Tetraciclinas/química , Composição de Medicamentos , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA