Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell Mol Life Sci ; 81(1): 182, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615283

RESUMO

BACKGROUND: Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS: Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS: Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS: Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Neurais , Animais , Camundongos , Estudos Prospectivos , Diferenciação Celular/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Apoptose/genética , Proliferação de Células/genética
2.
J Transl Med ; 22(1): 87, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254087

RESUMO

BACKGROUND: Identifying precise biomarkers of immunotherapy response for non-small cell lung carcinoma (NSCLC) before treatment is challenging. This study aimed to construct and investigate the potential performance of a sub-regional radiomics model (SRRM) as a novel tumor biomarker in predicting the response of patients with NSCLC treated with immune checkpoint inhibitors, and test whether its predictive performance is superior to that of conventional radiomics, tumor mutational burden (TMB) score and programmed death ligand-1 (PD-L1) expression. METHODS: We categorized 264 patients from retrospective databases of two centers into training (n = 159) and validation (n = 105) cohorts. Radiomic features were extracted from three sub-regions of the tumor region of interest using the K-means method. We extracted 1,896 features from each sub-region, resulting in 5688 features per sample. The least absolute shrinkage and selection operator regression method was used to select sub-regional radiomic features. The SRRM was constructed and validated using the support vector machine algorithm. We used next-generation sequencing to classify patients from the two cohorts into high TMB (≥ 10 muts/Mb) and low TMB (< 10 muts/Mb) groups; immunohistochemistry was performed to assess PD-L1 expression in formalin-fixed, paraffin-embedded tumor sections, with high expression defined as ≥ 50% of tumor cells being positive. Associations between the SRRM and progression-free survival (PFS) and variant genes were assessed. RESULTS: Eleven sub-regional radiomic features were employed to develop the SRRM. The areas under the receiver operating characteristic curve (AUCs) of the proposed SRRM were 0.90 (95% confidence interval [CI] 0.84-0.96) and 0.86 (95% CI 0.76-0.95) in the training and validation cohorts, respectively. The SRRM (low vs. high; cutoff value = 0.936) was significantly associated with PFS in the training (hazard ratio [HR] = 0.35 [0.24-0.50], P < 0.001) and validation (HR = 0.42 [0.26-0.67], P = 0.001) cohorts. A significant correlation between the SRRM and three variant genes (H3C4, PAX5, and EGFR) was observed. In the validation cohort, the SRRM demonstrated a higher AUC (0.86, P < 0.001) than that for PD-L1 expression (0.66, P = 0.034) and TMB score (0.54, P = 0.552). CONCLUSIONS: The SRRM had better predictive performance and was superior to conventional radiomics, PD-L1 expression, and TMB score. The SRRM effectively stratified the progression-free survival (PFS) risk among patients with NSCLC receiving immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Antígeno B7-H1/genética , Radiômica , Estudos Retrospectivos , Imunoterapia , Biomarcadores Tumorais , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
4.
Elife ; 122023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099574

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most frequent of the keratinocyte-derived malignancies with actinic keratosis (AK) as a precancerous lesion. To comprehensively delineate the underlying mechanisms for the whole progression from normal skin to AK to invasive cSCC, we performed single-cell RNA sequencing (scRNA-seq) to acquire the transcriptomes of 138,982 cells from 13 samples of six patients including AK, squamous cell carcinoma in situ (SCCIS), cSCC, and their matched normal tissues, covering comprehensive clinical courses of cSCC. We identified diverse cell types, including important subtypes with different gene expression profiles and functions in major keratinocytes. In SCCIS, we discovered the malignant subtypes of basal cells with differential proliferative and migration potential. Differentially expressed genes (DEGs) analysis screened out multiple key driver genes including transcription factors along AK to cSCC progression. Immunohistochemistry (IHC)/immunofluorescence (IF) experiments and single-cell ATAC sequencing (scATAC-seq) data verified the expression changes of these genes. The functional experiments confirmed the important roles of these genes in regulating cell proliferation, apoptosis, migration, and invasion in cSCC tumor. Furthermore, we comprehensively described the tumor microenvironment (TME) landscape and potential keratinocyte-TME crosstalk in cSCC providing theoretical basis for immunotherapy. Together, our findings provide a valuable resource for deciphering the progression from AK to cSCC and identifying potential targets for anticancer treatment of cSCC.


Assuntos
Carcinoma de Células Escamosas , Ceratose Actínica , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/metabolismo , Ceratose Actínica/genética , Ceratose Actínica/metabolismo , Ceratose Actínica/patologia , Neoplasias Cutâneas/patologia , Queratinócitos/metabolismo , Transcriptoma , Microambiente Tumoral/genética
5.
Adv Sci (Weinh) ; 10(28): e2301852, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552043

RESUMO

Despite the development of advanced technologies for interventional coronary reperfusion after myocardial infarction, a substantial number of patients experience high mortality due to myocardial ischemia-reperfusion (MI/R) injury. An in-depth understanding of the mechanisms underlying MI/R injury can provide crucial strategies for mitigating myocardial damage and improving patient survival. Here, it is discovered that the 4-hydroxy-2-nonenal (4-HNE) accumulates during MI/R, accompanied by high rates of myocardial ferroptosis. The loss-of-function of aldehyde dehydrogenase 2 (ALDH2), which dissipates 4-HNE, aggravates myocardial ferroptosis, whereas the activation of ALDH2 mitigates ferroptosis. Mechanistically, 4-HNE targets glutathione peroxidase 4 (GPX4) for K48-linked polyubiquitin-related degradation, which 4-HNE-GPX4 axis commits to myocyte ferroptosis and forms a positive feedback circuit. 4-HNE blocks the interaction between GPX4 and ovarian tumor (OTU) deubiquitinase 5 (OTUD5) by directly carbonylating their cysteine residues at C93 of GPX4 and C247 of OTUD5, identifying OTUD5 as the novel deubiquitinase for GPX4. Consequently, the elevation of OTUD5 deubiquitinates and stabilizes GPX4 to reverse 4-HNE-induced ferroptosis and alleviate MI/R injury. The data unravel the mechanism of 4-HNE in GPX4-dependent ferroptosis and identify OTUD5 as a novel therapeutic target for the treatment of MI/R injury.

6.
ACS Appl Mater Interfaces ; 15(32): 38247-38263, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549059

RESUMO

Coronary atherosclerosis is closely related to inflammation and oxidative stress. Owing to poor biocompatibility, lack of personalized treatment, and late toxic side effects, traditional drug-eluting stent intervention, releasing antiproliferative drugs, can delay endothelial repair and cause late thrombosis. The inflammation caused by atherosclerosis results in an acidic microenvironment and oxidative stress, which can be considered as triggers for precise and intelligent treatment. Here, we used catechol hyaluronic acid (C-HA) and cystamine (Cys) to prepare C-HA-Cys hydrogel coatings by amide reaction. The H2S-releasing donor allicin was loaded in the hydrogel to form an intelligent biomimetic coating. The disulfide bond of Cys made the cross-linked network redox-responsive to the inflammation and oxidative stress in the microenvironment by releasing the drug and H2S intelligently to combat the side effects of stent implantation. This study evaluated the hemocompatibility, anti-inflammatory capacity, vascular wall cytocompatibility, and in vivo histocompatibility of this intelligent hydrogel coating. Furthermore, the effect of H2S released from the coating on atherosclerosis-related signaling pathways such as CD31 and cystathionine γ-lyase (CSE), CD36, and ACAT-1 was investigated. Our results indicate that the C-HA-Cys-Allicin hydrogel coating could be manufactured on the surface of vascular interventional devices to achieve a precise response to the microenvironment of the lesion to release drug, which can attain the purpose of prevention of in-stent restenosis and ensure the effectiveness and safety of the application of interventional devices.


Assuntos
Aterosclerose , Stents Farmacológicos , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Inflamação/metabolismo , Dissulfetos/farmacologia , Aterosclerose/metabolismo , Ácido Hialurônico/farmacologia
7.
Front Oncol ; 13: 1176574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621675

RESUMO

Background: Immune checkpoint inhibitors (ICIs) have been proven to be an effective treatment strategy for a variety of malignant tumors. However, only a subset of patients can benefit from ICIs due to factors such as drug resistance. Therefore, it is crucial to identify biomarkers that can accurately predict the efficacy of ICIs and provide a basis for individualized immunotherapy. In this study, we conducted a systematic review and meta-analysis to explore whether the chemokine interleukin 8 (IL-8) can be used as a biomarker to evaluate the efficacy of ICIs treatment. Methods: We conducted a comprehensive search of several databases, including PubMed, Embase, Web of Science, and Cochrane, to identify relevant articles published up to June 08, 2023. Our inclusion criteria were limited to cohort studies and clinical trials that reported hazard ratios (HR) and 95% confidence intervals (CI) for overall survival (OS) and/or progression-free survival (PFS), as well as the objective response rate (ORR), in cancer patients with high and low IL-8 expression. For data analysis, we used Revman to generate forest plots, subgroup analysis, and assess publication bias. Additionally, Stata was utilized for sensitivity analysis and further examination of publication bias. Results: A total of 24 datasets, involving 3190 participants, were selected from 14 studies. The meta-analysis revealed a reduction in ORR, OS, and/or PFS in the high IL-8 group after treatment with ICIs compared to the low IL-8 group. Conclusion: IL-8 can serve as a biomarker for predicting the efficacy of ICIs. Patients with lower expression of IL-8 may benefit from ICIs treatment. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=383188, identifier CRD42022383188.

8.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447493

RESUMO

Microbial polysaccharides are natural carbohydrates that can confer adhesion capacity to cells and protect them from harsh environments. Due to their various physiological activities, these macromolecules are widely used in food, medicine, environmental, cosmetic, and textile applications. Microbial co-culture is an important strategy that is used to increase the production of microbial polysaccharides or produce new polysaccharides (structural alterations). This is achieved by exploiting the symbiotic/antagonistic/chemo-sensitive interactions between microbes and stimulating the expression of relevant silent genes. In this article, we review the performance of polysaccharides produced using microbial co-culture in terms of yield, antioxidant activity, and antibacterial, antitumor, and anti-inflammatory properties, in addition to the advantages and application prospects of co-culture. Moreover, the potential for microbial polysaccharides to be used in various applications is discussed.

11.
Reprod Sci ; 30(8): 2573-2579, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36854822

RESUMO

It is widely accepted that kisspeptin plays an integral role in the regulation of reproduction. Genetic variations in the KISS1 gene have been frequently reported to be linked to reproductive diseases, but there is still a lack of data on the association between KISS1 variations and female reproductive disorders. The present study aimed to examine the association of three missense SNPs in the KISS1 gene including rs12998, rs35431622, and rs4889 in association with idiopathic recurrent pregnancy loss (iRPL). A total of 720 individuals were recruited in this study. The DNA from the blood sample was extracted and genotyped using the PCR method. Haplotype and linkage disequilibrium (LD) have also been analyzed. The results of this study suggested that rs12998 G > A and rs4889 C > G had a significant association with iRPL (p < 0.05); while rs35431622 A > G didn't indicate any association with iRPL. A significant association was also found for three haplotypes including C-A-A, G-G-G, and G-G-A in this population. The analysis also showed a significant LD between rs12998 and rs35431622 (P < 0.0005). The rs12998 G > A and rs4889 C > G variants of KISS1 are linked to unexplained recurrent pregnancy loss and may be risk factors for this disease.


Assuntos
Aborto Habitual , Kisspeptinas , Gravidez , Humanos , Feminino , Kisspeptinas/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Genes Supressores de Tumor , Aborto Habitual/genética
12.
Adv Biol (Weinh) ; 7(6): e2200277, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36721069

RESUMO

Efferocytosis, responsible for apoptotic cell clearance, is an essential factor against atherosclerosis. It is reported that efferocytosis is severely impaired in fibroatheroma, especially in vulnerable thin cap fibroatheroma. However, there is a shortage of studies on efferocytosis defects in cell and animal models. Here, the impacts of oxidized low density lipoprotein (ox-LDL) and glut 1 inhibitor (STF31) on efferocytosis of macrophages are studied, and an evaluation system is constructed. Through regulating the cell ratios and stimulus, three types of atherosclerotic spheroids are fabricated, and a necrotic core emerges with surrounding apoptotic cells. Rat models present a similar phenomenon in that substantial apoptotic cells are uncleared in time in vulnerable plaque, and the model period is shortened to 7 weeks. Mechanism studies reveal that ox-LDL, through mRNA and miRNA modulation, downregulates efferocytosis receptor (PPARγ/LXRα/MerTK), internalization molecule (SLC29a1), and upregulates the competitive receptor CD300a that inhibits efferocytosis receptor-ligand binding process. The foam cell differentiation has also confirmed that CD36 and Lp-PLA2 levels are significantly elevated, and macrophages present an interesting transition into prothrombic phenotype. Collectively, the atherosclerotic models featured by efferocytosis defect provide a comprehensive platform to evaluate the efficacy of medicine and biomaterials for atherosclerosis treatment.


Assuntos
Doenças dos Animais , Aterosclerose , Placa Aterosclerótica , Ratos , Animais , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Apoptose/fisiologia , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Fagocitose/fisiologia , Doenças dos Animais/metabolismo
13.
Front Immunol ; 13: 960459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420269

RESUMO

Different biomarkers based on genomics variants have been used to predict the response of patients treated with PD-1/programmed death receptor 1 ligand (PD-L1) blockade. We aimed to use deep-learning algorithm to estimate clinical benefit in patients with non-small-cell lung cancer (NSCLC) before immunotherapy. Peripheral blood samples or tumor tissues of 915 patients from three independent centers were profiled by whole-exome sequencing or next-generation sequencing. Based on convolutional neural network (CNN) and three conventional machine learning (cML) methods, we used multi-panels to train the models for predicting the durable clinical benefit (DCB) and combined them to develop a nomogram model for predicting prognosis. In the three cohorts, the CNN achieved the highest area under the curve of predicting DCB among cML, PD-L1 expression, and tumor mutational burden (area under the curve [AUC] = 0.965, 95% confidence interval [CI]: 0.949-0.978, P< 0.001; AUC =0.965, 95% CI: 0.940-0.989, P< 0.001; AUC = 0.959, 95% CI: 0.942-0.976, P< 0.001, respectively). Patients with CNN-high had longer progression-free survival (PFS) and overall survival (OS) than patients with CNN-low in the three cohorts. Subgroup analysis confirmed the efficient predictive ability of CNN. Combining three cML methods (CNN, SVM, and RF) yielded a robust comprehensive nomogram for predicting PFS and OS in the three cohorts (each P< 0.001). The proposed deep-learning method based on mutational genes revealed the potential value of clinical benefit prediction in patients with NSCLC and provides novel insights for combined machine learning in PD-1/PD-L1 blockade.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico
14.
Pathol Res Pract ; 238: 154027, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084426

RESUMO

Prosaposin (PSAP) plays a critical role in sphingolipid and cancer metabolism. Reports have shown that PSAP was involved in proliferation, tumorigenesis, and metastasis. However, the expression pattern of PSAP and its prognostic roles in gastric cancer remain elusive. PSAP expression pattern and its prognostic roles in gastric cancer (GC) were explored using data from the TCGA and Kaplan-Meier Plotter. Immunohistochemical staining of GC tissues was performed to validate the prognostic role of PSAP. TISIDB was used to analyze its correlation with immunomodulators. PSAP-associated genes, PDCD1, TGFB1, and CSF1R were used to build a risk model to evaluate immunotherapy outcomes of patients with stomach adenocarcinoma (STAD). Results showed that PSAP was highly expressed in GC. High PSAP expression in GC patients also significantly indicated a poor prognosis. The results of immunohistochemical staining showed that PSAP was an independent prognostic factor in GC patients. Based on three PSAP-associated genes, a risk model that could predict the prognosis and immunotherapy outcome of STAD was bulit. PSAP was an independent prognostic factor in GC. Our results have identified three prognosis-related genes which were useful to evaluate immunotherapy outcomes of STAD patients.

15.
Front Genet ; 13: 957655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105100

RESUMO

Background: Gastric cancer (GC) is the most common malignant tumor. Due to the lack of practical molecular markers, the prognosis of patients with advanced gastric cancer is still poor. A number of studies have confirmed that the coagulation system is closely related to tumor progression. Therefore, the purpose of this study was to construct a coagulation-related gene signature and prognostic model for GC by bioinformatics methods. Methods: We downloaded the gene expression and clinical data of GC patients from the TCGA and GEO databases. In total, 216 coagulation-related genes (CRGs) were obtained from AmiGO 2. Weighted gene co-expression network analysis (WGCNA) was used to identify coagulation-related genes associated with the clinical features of GC. Last absolute shrinkage and selection operator (LASSO) Cox regression was utilized to shrink the relevant predictors of the coagulation system, and a Coag-Score prognostic model was constructed based on the coefficients. According to this risk model, GC patients were divided into high-risk and low-risk groups, and overall survival (OS) curves and receiver operating characteristic (ROC) curves were drawn in the training and validation sets, respectively. We also constructed nomograms for predicting 1-, 2-, and 3-year survival in GC patients. Single-sample gene set enrichment analysis (ssGSEA) was exploited to explore immune cells' underlying mechanisms and correlations. The expression levels of coagulation-related genes were verified by real-time quantitative polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results: We identified seven CRGs employed to construct a Coag-Score risk model using WGCNA combined with LASSO regression. In both training and validation sets, GC patients in the high-risk group had worse OS than those in the low-risk group, and Coag-Score was identified as an independent predictor of OS, and the nomogram provided a quantitative method to predict the 1-, 2-, and 3-year survival rates of GC patients. Functional analysis showed that Coag-Score was mainly related to the MAPK signaling pathway, complement and coagulation cascades, angiogenesis, epithelial-mesenchymal transition (EMT), and KRAS signaling pathway. In addition, the high-risk group had a significantly higher infiltration enrichment score and was positively associated with immune checkpoint gene expression. Conclusion: Coagulation-related gene models provide new insights and targets for the diagnosis, prognosis prediction, and treatment management of GC patients.

16.
J Ovarian Res ; 15(1): 98, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986371

RESUMO

BACKGROUND: Non-SMC condensin I complex subunit G (NCAPG), a member of the subunit of condensin complex, is significantly overexpressed in various cancers and involved in the pathogenesis of cancers. However, the roles of NCAPG in ovarian cancer remain unclear. METHODS: The mRNA expression, overall survival, and disease-free survival of NCAPG in ovarian cancer were analyzed by GEPIA and KM plotter database, and the expression levels of NCAPG in OC tissues and cell lines were determined by qPCR and immunohistochemistry analysis. shRNA targeting NCAPG gene (sh-NCAPG) was utilized to knock down NCAPG expression in OVCAR3 and SKOV3 cells. Subsequently, CCK-8 assay, colony formation assay, transwell invasion assay and flow cytometric analysis were performed to detect the effect of NCAPG on OC cell proliferation, apoptosis, and invasion. Finally, western blot assays were performed to detect the mechanism of NCAPG in ovarian cancer. RESULTS: Analysis using GEPIA and KM plotter database showed NCAPG was upregulated in ovarian cancer and negatively associated with the survival of OC patients. qPCR and immunohistochemistry analysis confirmed it was highly expressed in both ovarian cancer tissues and cells. The silencing of NCAPG inhibited OC cell proliferation and invasion, and induced cell apoptosis. Additionally, flow cytometric analysis revealed that NCAPG knockdown arrested the cell cycle at G2 and S phases. Furthermore, we also found that downregulation of NCAPG could suppress OC cell proliferation and invasion via activating the p38 MAPK signaling pathway. CONCLUSION: Our results suggest that NCAPG exhibits an important role in the development and progression of ovarian cancer and implicates NCAPG as a potential therapeutic target in ovarian cancer.


Assuntos
Apoptose , Neoplasias Ovarianas , Apoptose/genética , Carcinoma Epitelial do Ovário/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/patologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Mater Today Bio ; 16: 100392, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36033376

RESUMO

Chronic wounds and the accompanying inflammation are ongoing challenges in clinical treatment. They are usually accompanied by low pH and high oxidative stress environments, limiting cell growth and proliferation. Ordinary medical gauze has limited therapeutic effects on chronic wounds, and there is active research to develop new wound dressings. The chitosan hydrogel could be widely used in biomedical science with great biocompatibility, but the low mechanical properties limit its development. This work uses polyacrylamide to prepare double-network (DN) hydrogels based on bioadhesive catechol-chitosan hydrogels. Cystamine and N, N'-Bis(acryloyl)cystamine, which can be cross-linking agents with disulfide bonds to prepare redox-responsive DN hydrogels and pH-responsive nanoparticles (NPs) prepared by acetalized cyclodextrin (ACD) are used to intelligently release drugs against chronic inflammation microenvironments. The addition of catechol groups and ACD-NPs loaded with the Resolvin E1 (RvE1), promotes cell adhesion and regulates the inflammatory response at the wound site. The preparation of the DN hydrogel in this study can be used to treat and regulate the inflammatory microenvironment of chronic wounds accurately. It provides new ideas for using inflammation resolving factor loaded in DN hydrogel of good biocompatibility with enhanced mechanical properties to intelligent regulate the wound inflammation and promote the wound repaired.

18.
Front Med (Lausanne) ; 9: 808378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592856

RESUMO

Background: We aimed to exploit a somatic mutation signature (SMS) to predict the best overall response to anti-programmed cell death protein-1 (PD-1) therapy in non-small cell lung cancer (NSCLC). Methods: Tumor samples of 248 patients with epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK)-negative non-squamous NSCLC treated with anti-PD-1 were molecularly tested by targeted next-generation sequencing or whole exome sequencing. On the basis of machine learning, we developed and validated a predictive model named SMS using the training (n = 83) and validation (n = 165) cohorts. Results: The SMS model comprising a panel of 15 genes (TP53, PTPRD, SMARCA4, FAT1, MGA, NOTCH1, NTRK3, INPP4B, KMT2A, PAK1, ATRX, BCOR, KDM5C, DDR2, and ARID1B) was built to predict best overall response in the training cohort. The areas under the curves of the training and validation cohorts were higher than those of tumor mutational burden and PD-L1 expression. Patients with SMS-high in the training and validation cohorts had poorer progression-free survival [hazard ratio (HR) = 6.01, P < 0.001; HR = 3.89, P < 0.001] and overall survival (HR = 7.60, P < 0.001; HR = 2.82, P < 0.001) than patients with SMS-low. SMS was an independent factor in multivariate analyses of progression-free survival and overall survival (HR = 4.32, P < 0.001; HR = 3.07, P < 0.001, respectively). Conclusion: This study revealed the predictive value of SMS for immunotherapy best overall response and prognosis in EGFR/ALK-negative non-squamous NSCLC as a potential biomarker in anti-PD-1 therapy.

19.
Chin Med J (Engl) ; 135(4): 456-461, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935692

RESUMO

BACKGROUND: Previous studies have shown that bufalin exerts antitumor effects through various mechanisms. This study aimed to determine the antineoplastic mechanism of bufalin, an extract of traditional Chinese medicine toad venom, in ovarian cancer. METHODS: The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assays were used to investigate the antiproliferative effect of bufalin on the ovarian cancer cell line SK-OV-3. Molecular docking was used to investigate the combination of bufalin and epidermal growth factor receptor (EGFR) protein. Western blotting was performed to detect the expression of EGFR protein and its downstream targets. RESULTS: Bufalin inhibited the proliferation of SK-OV-3 cells in a dose- and time-dependent manner. Bufalin was confirmed to combine with EGFR protein using molecular docking and downregulate expression of EGFR. Bufalin inhibited phosphorylation of EGFR, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). CONCLUSION: Bufalin suppresses the proliferation of ovarian cancer cells through the EGFR/AKT/ERK signaling pathway.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Apoptose , Bufanolídeos , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB , Humanos , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/tratamento farmacológico
20.
Ann Transl Med ; 9(19): 1497, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34805359

RESUMO

BACKGROUND: Long-term exposure to ultraviolet (UV) radiation can cause cutaneous squamous cell carcinoma (cSCC), which is one of the most common malignant cancers worldwide. Actinic keratosis (AK) is generally considered a precancerous lesion of cSCC. However, the pathogenesis and oncogenic processes of AK and cSCC remain elusive, especially in the context of photodamage. METHODS: In this study, transcriptome sequencing was performed on AK, cSCC, normal sun-exposed skin (NES) tissues, and normal non-sun-exposed skin (NNS) from 24 individuals. Bioinformatics analysis to identify the differentially expressed genes (DEGs) of 4 groups, and potential key genes of cSCC were validated by real-time quantitative reverse transcription PCR (qRT-PCR). RESULTS: A total of 46,930 genes were differentially expressed in the 4 groups, including 127 genes that were differentially expressed between NES and NNS, 420 DEGs in AK compared to NES, 1,658 DEGs in cSCC compared to NES, and 1,389 DEGs in cSCC compared to AK. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the DEGs are involved in multiple pathways, including extracellular matrix (ECM)-receptor interaction, immune, inflammatory, microbial infection, and other related pathways. Finally, 5 new genes (HEPHL1, FBN2, SULF1, SULF2, and TCN1) were confirmed significantly upregulated in cSCC. CONCLUSIONS: Using transcriptome sequencing and integrated bioinformatical analysis, we have identified key DEGs and pathways in cSCC, which could improve our understanding of the cause and underlying molecular events of AK and cSCC. HEPHL1, FBN2, SULF1, SULF2, and TCN1 may be novel potential biomarkers and therapeutic targets of cSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA