Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1378112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567023

RESUMO

Background: Infection is the main cause of death for patients after allogeneic hematopoietic stem cell transplantation (HSCT). However, pathogen profiles still have not been reported in detail due to their heterogeneity caused by geographic region. Objective: To evaluate the performance of metagenomic next-generation sequencing (mNGS) and summarize regional pathogen profiles of infected patients after HSCT. Methods: From February 2021 to August 2022, 64 patients, admitted to the Department of Hematology of The First Hospital of Jilin University for HSCT and diagnosed as suspected infections, were retrospectively enrolled. Results: A total of 38 patients were diagnosed as having infections, including bloodstream (n =17), pulmonary (n =16), central nervous system (CNS) (n =4), and chest (n =1) infections. Human betaherpesvirus 5 (CMV) was the most common pathogen in both bloodstream (n =10) and pulmonary (n =8) infections, while CNS (n =2) and chest (n =1) infections were mainly caused by Human gammaherpesvirus 4 (EBV). For bloodstream infection, Mycobacterium tuberculosis complex (n =3), Staphylococcus epidermidis (n =1), and Candida tropicalis (n =1) were also diagnosed as causative pathogens. Furthermore, mNGS combined with conventional tests can identify more causative pathogens with high sensitivity of 82.9% (95% CI 70.4-95.3%), and the total coincidence rate can reach up to 76.7% (95% CI 64.1-89.4%). Conclusions: Our findings emphasized the importance of mNGS in diagnosing, managing, and ruling out infections, and an era of more rapid, independent, and impartial diagnosis of infections after HSCT can be expected.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Estudos Retrospectivos , China , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sequenciamento de Nucleotídeos em Larga Escala , Candida tropicalis , Herpesvirus Humano 4 , Metagenômica , Sensibilidade e Especificidade
2.
Sci Rep ; 14(1): 7246, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538643

RESUMO

Glioblastoma (GBM) is the most common primary malignant cancer of the central nervous system. Insufficient oxygenation (hypoxia) has been linked to GBM invasion and aggression, leading to poor patient outcomes. Hypoxia induces gene expression for cellular adaptations. However, GBM is characterized by high intertumoral (molecular subtypes) and intratumoral heterogeneity (cell states), and it is not well understood to what extent hypoxia triggers patient-specific gene responses and cellular diversity in GBM. Here, we surveyed eight patient-derived GBM stem cell lines for invasion phenotypes in 3D culture, which identified two GBM lines showing increased invasiveness in response to hypoxia. RNA-seq analysis of the two patient GBM lines revealed a set of shared hypoxia response genes concerning glucose metabolism, angiogenesis, and autophagy, but also a large set of patient-specific hypoxia-induced genes featuring cell migration and anti-inflammation, highlighting intertumoral diversity of hypoxia responses in GBM. We further applied the Shared GBM Hypoxia gene signature to single cell RNA-seq datasets of glioma patients, which showed that hypoxic cells displayed a shift towards mesenchymal-like (MES) and astrocyte-like (AC) states. Interestingly, in response to hypoxia, tumor cells in IDH-mutant gliomas displayed a strong shift to the AC state, whereas tumor cells in IDH-wildtype gliomas mainly shifted to the MES state. This distinct hypoxia response of IDH-mutant gliomas may contribute to its more favorable prognosis. Our transcriptomic studies provide a basis for future approaches to better understand the diversity of hypoxic niches in gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Glioblastoma/patologia , Hipóxia/genética , Hipóxia/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Hipóxia Celular/genética
3.
Cancer Biol Ther ; 25(1): 2323768, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38465861

RESUMO

Double minutes (DMs), extrachromosomal gene fragments found within certain tumors, have been noted to carry onco- and drug resistance genes contributing to tumor pathogenesis and progression. After screening for SUMO-related molecule expression within various tumor sample and cell line databases, we found that SUMO-conjugating enzyme UBC9 has been associated with genome instability and tumor cell DM counts, which was confirmed both in vitro and in vivo. Karyotyping determined DM counts post-UBC9 knockdown or SUMOylation inhibitor 2-D08, while RT-qPCR and Western blot were used to measure DM-carried gene expression in vitro. In vivo, fluorescence in situ hybridization (FISH) identified micronucleus (MN) expulsion. Western blot and immunofluorescence staining were then used to determine DNA damage extent, and a reporter plasmid system was constructed to detect changes in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Our research has shown that UBC9 inhibition is able to attenuate DM formation and lower DM-carried gene expression, in turn reducing tumor growth and malignant phenotype, via MN efflux of DMs and lowering NHEJ activity to increase DNA damage. These findings thus reveal a relationship between heightened UBC9 activity, increased DM counts, and tumor progression, providing a potential approach for targeted therapies, via UBC9 inhibition.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Humanos , Núcleo Celular , Hibridização in Situ Fluorescente
4.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38313256

RESUMO

Glioblastoma (GBM) is a malignant brain tumor with uncontrolled invasive growth. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 to gain biomechanical plasticity for polarized migration through confined space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal active endocytosis at cell front and filamentous actin assembly at rear to propel GBM cells through constrictions. These two processes are interconnected and governed by Plexin-B2 that orchestrates cortical actin and membrane tension, shown by biomechanical assays. Molecular dynamics simulations predict that balanced membrane and actin tension are required for optimal migratory velocity and consistency. Furthermore, Plexin-B2 mechanosensitive function requires a bendable extracellular ring structure and affects membrane internalization, permeability, phospholipid composition, as well as inner membrane surface charge. Together, our studies unveil a key element of membrane tension and mechanoelectrical coupling via Plexin-B2 that enables GBM cells to adapt to physical constraints and achieve polarized confined migration.

5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 47-51, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38171559

RESUMO

OBJECTIVE: To delineate a deletional mutation of the HLA-B gene in a Chinese pedigree. METHODS: A female patient with acute myeloid leukemia who had visited Liuzhou People's Hospital in April 2022 was selected as the study subject. Routine human leukocyte antigen (HLA) was determined by using PCR-sequence specific oligonucleotide polymorphism (PCR-SSOP) and PCR-sequence-based typing (PCR-SBT) methods. Next generation sequencing (NGS) was used to validate the candidate variant in the HLA-B gene. RESULTS: The PCR-SBT and SSOP results for the HLA-B locus were inconsistent for the patient and her daughter. The SSOP results of the two individuals were HLA-B*35:01, 40:02 and HLA-B*35:01, 40:01, respectively. However, the PCR-SBT results has indicated a mismatch with the nearest HLA-B*35:01 at exon 4. NGS results showed that the HLA-B*35:01 had a 9 bp deletion in the intron 5. The patient's husband was HLA-B*40:01, 58:01, which was normal. CONCLUSION: The variant in intron 5 of the HLA-B gene in this pedigree has mapped to a primer-binding region for the SBT reagent, which has affected the accuracy of PCR-SBT results.


Assuntos
Antígenos HLA , Antígenos HLA-B , Humanos , Feminino , Alelos , Linhagem , Antígenos HLA/genética , Antígenos HLA-B/genética , China , Teste de Histocompatibilidade/métodos , Análise de Sequência de DNA/métodos
6.
Immunity ; 56(8): 1825-1843.e6, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451265

RESUMO

Glioblastoma (GBM), a highly lethal brain cancer, is notorious for immunosuppression, but the mechanisms remain unclear. Here, we documented a temporospatial patterning of tumor-associated myeloid cells (TAMs) corresponding to vascular changes during GBM progression. As tumor vessels transitioned from the initial dense regular network to later scant and engorged vasculature, TAMs shifted away from perivascular regions and trafficked to vascular-poor areas. This process was heavily influenced by the immunocompetence state of the host. Utilizing a sensitive fluorescent UnaG reporter to track tumor hypoxia, coupled with single-cell transcriptomics, we revealed that hypoxic niches attracted and sequestered TAMs and cytotoxic T lymphocytes (CTLs), where they were reprogrammed toward an immunosuppressive state. Mechanistically, we identified chemokine CCL8 and cytokine IL-1ß as two hypoxic-niche factors critical for TAM trafficking and co-evolution of hypoxic zones into pseudopalisading patterns. Therefore, perturbation of TAM patterning in hypoxic zones may improve tumor control.


Assuntos
Glioblastoma , Linfócitos T Citotóxicos , Humanos , Macrófagos Associados a Tumor , Macrófagos , Terapia de Imunossupressão , Glioblastoma/patologia , Microambiente Tumoral
7.
Int J Nanomedicine ; 18: 2181-2196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131548

RESUMO

Purpose: Precisely detecting colorectal liver metastases (CLMs), the leading cause of colorectal cancer-associated mortality, is extremely important. 1H MRI with high soft tissue resolution plays a key role in the diagnosing liver lesions; however, precise detecting CLMs by 1H MRI is a great challenge due to the limited sensitivity. Even though contrast agents may improve the sensitivity, due to their short half-life, repeated injections are required to monitor the changes of CLMs. Herein, we synthesized c-Met-targeting peptide-functionalized perfluoro-15-crown-5-ether nanoparticles (AH111972-PFCE NPs), for highly sensitive and early diagnosis of small CLMs. Methods: The size, morphology and optimal properties of the AH111972-PFCE NPs were characterized. c-Met specificity of the AH111972-PFCE NPs was validated by in vitro experiment and in vivo 19F MRI study in the subcutaneous tumor murine model. The molecular imaging practicability and long tumor retention of the AH111972-PFCE NPs were evaluated in the liver metastases mouse model. The biocompatibility of the AH111972-PFCE NPs was assessed by toxicity study. Results: AH111972-PFCE NPs with regular shape have particle size of 89.3 ± 17.8 nm. The AH111972-PFCE NPs exhibit high specificity, strong c-Met-targeting ability, and precise detection capability of CLMs, especially small or ill-defined fused metastases in 1H MRI. Moreover, AH111972-PFCE NPs could be ultralong retained in metastatic liver tumors for at least 7 days, which is conductive to the implementation of continuous therapeutic efficacy monitoring. The NPs with minimal side effects and good biocompatibility are cleared mainly via the spleen and liver. Conclusion: The c-Met targeting and ultralong tumor retention of AH111972-PFCE NPs will contribute to increasing therapeutic agent accumulation in metastatic sites, laying a foundation for CLMs diagnosis and further c-Met targeted treatment integration. This work provides a promising nanoplatform for the future clinical application to patients with CLMs.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Imageamento por Ressonância Magnética , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico por imagem
8.
Nano Lett ; 23(7): 2964-2973, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36947431

RESUMO

Recent advances in intratracheal delivery strategies have sparked considerable biomedical interest in developing this promising approach for lung cancer diagnosis and treatment. However, there are very few relevant studies on the behavior and mechanism of imaging nanoparticles (NPs) after intratracheal delivery. Here, we found that nanosized perfluoro-15-crown-5-ether (PFCE NPs, ∼200 nm) exhibite significant 19F-MRI signal-to-noise ratio (SNR) enhancement than perfluorooctyl bromide (PFOB NPs) up to day 7 after intratracheal delivery. Alveolar macrophages (AMs) engulf PFCE NPs, become PFCE NPs-laden AMs, and then migrate into the tumor margin, resulting in increased tumor PFCE concentration and 19F-MRI signals. AMs-mediated translocation of PFCE NPs to lung draning lymph nodes (dLNs) decreases the background PFCE concentration. Our results shed light on the dynamic AMs-mediated translocation of intratracheally delivered PFC NPs for effective lung tumor visualization and reveal a pathway to develop and promote the clinical translation of an intratracheal delivery-based imaging strategy.


Assuntos
Fluorocarbonos , Neoplasias Pulmonares , Nanopartículas , Humanos , Macrófagos Alveolares , Imageamento por Ressonância Magnética/métodos , Neoplasias Pulmonares/tratamento farmacológico
9.
ACS Nano ; 16(8): 12590-12605, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35863049

RESUMO

Low accumulation of anticancer drugs in tumors and serious systemic toxicity remain the main challenges to the clinical efficiency of pharmaceuticals. Pulmonary delivery of nanoscale-based drug delivery systems offered a strategy to increase antitumor activity with minimal adverse exposure. Herein, we report an osimertinib-loaded perfluoro-15-crown-5-ether (AZD9291-PFCE) nanoemulsion, through intratracheal and intravenous delivery, synergizes with 19F magnetic resonance imaging (19F MRI)-guided low-intensity focused ultrasound (LIFU) for lung cancer therapy. Pulmonary delivery of AZD9291-PFCE nanoemulsion in orthotopic lung carcinoma models achieves quick distribution of the nanoemulsion in lung tissues and tumors without short-term and long-term toxic effects. Furthermore, LIFU can trigger drug release from the AZD9291-PFCE nanoemulsion and specifically increases tumor vascular and tumor tissue permeability. 19F MRI was applied to quantify nanoemulsion accumulation in tumors in real time after LIFU irradiation. We validate the treatment effect of AZD9291-PFCE nanoemulsion in resected human lung cancer tissues, proving the translational potential to enhance clinical outcomes of lung cancer therapy. Thus, this work presents a promising pulmonary nanoemulsion delivery system of osimertinib (AZD9291) for targeted therapy of lung cancer without severe side effects.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fluorocarbonos , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Fluorocarbonos/uso terapêutico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Administração Intravenosa
10.
J Photochem Photobiol B ; 233: 112496, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689932

RESUMO

The application of nanostructures to design fluorescence resonance energy transfer (FRET) based sensing platforms has been greatly concerned with the demand for sensitive and selective detection of biomolecules. Here, a novel sensitive turn-on fluorescence strategy based on the FRET mechanism has been designed for hyaluronidase (HAase) detection through the modulation of Cu2-xSe@HA-Rh6G nanoprobe fabricated by self-assembly of rhodamine 6G (Rh6G) together with Cu2-xSe@HA nanoparticles through electrostatic adsorption. The Cu2-xSe@HA had extensive localized surface plasma resonance (LSPR) absorption in the wide range of ultraviolet (UV) to near-infrared (NIR) wavelengths and showed good light capture characteristics, which can be acted as good acceptors in the FRET interactions with Rh6G, inducing its efficient fluorescence quenching. In the presence of HAase, the FRET process was disrupted and the fluorescence signal was recovered. In the range of 0.1-10.0 U/mL, the fluorescence recovery of Rh6G showed a good linear relationship with the concentration of HAase, and the detection limit was 0.06 U/mL. The sensing platform has been used for HAase detection in real urine samples and cancer cells imaging.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Hialuronoglucosaminidase , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Ácido Hialurônico/química , Hialuronoglucosaminidase/metabolismo , Rodaminas/química
11.
J Colloid Interface Sci ; 615: 95-109, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35124510

RESUMO

Developing new nanoplatforms for dynamically and quantitatively visualizing drug accumulation and targeting within tumors is crucial for precision cancer theranostic. However, achieving efficient tumor therapy via synergistic photothermal/photodynamic therapy (PTT/PDT) using a single excitation light source, remains a challenge. In this work, we designed Gd-surface functionalized copper sulfide nanoparticles that were modified with folic acid (FA) (Cu1.96S-Gd@FA) to overcome the above limitations and promote PTT/PDT therapeutics. Here, Cu1.96S-Gd nanoparticles were synthesized via a coprecipitation method. All samples exhibited high longitudinal relaxivity (up to 12.9 mM-1 s-1) and strong photothermal conversion efficiency (50.6%). Furthermore, the Gd ions promoted electron-hole segregation, inducing the Cu1.96S-Gd nanoparticles to generate more reactive oxygen species (ROS) than pure Cu1.96S nanoparticles. The Cu1.96S-Gd@FA enabled the targeting of folate receptor (FR) and promoted cellular uptake, consequently enhancing oncotherapy efficacy. Compared to non-targeted Cu1.96S-Gd, a higher signal enhancement for magnetic resonance (MR) imaging in vivo by Cu1.96S-Gd@FA was recorded. Given photothermal ability, the nanoparticles also could be visualized in infrared (IR) imaging. Furthermore, the nanoparticles exhibited biodegradation behavior and achieved good drug elimination performance via renal clearance. Our strategy, integrating Cu1.96S-Gd@FA nanoparticles, MR/IR dual-modal imaging, and PTT/PDT into one nanoplatform, demonstrated great potential for anti-breast cancer therapy by effectively targeting FR overexpressed breast cancer cells.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Ácido Fólico/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Fotoquimioterapia/métodos , Fototerapia , Medicina de Precisão
12.
Nano Lett ; 22(3): 963-972, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35073699

RESUMO

Inefficient tumor accumulation and penetration remain as the main challenges to therapy efficacy of lung cancer. Local delivery of smart nanoclusters can increase drug penetration and provide superior antitumor effects than systemic routes. Here, we report self-assembled pH-sensitive superparamagnetic iron oxide nanoclusters (SPIONCs) that enhance in situ ferroptosis and apoptosis with radiotherapy and chemodynamic therapy. After pulmonary delivery in orthotopic lung cancer, SPIONCs disintegrate into smaller nanoparticles and release more iron ions in an acidic microenvironment. Under single-dose X-ray irradiation, endogenous superoxide dismutase converts superoxide radicals produced by mitochondria to hydrogen peroxide, which in turn generates hydroxyl radicals by the Fenton reaction from iron ions accumulated inside the tumor. Finally, irradiation and iron ions enhance tumor lipid peroxidation and induce cell apoptosis and ferroptosis. Thus, rationally designed pulmonary delivered nanoclusters provide a promising strategy for noninvasive imaging of lung cancer and synergistic therapy.


Assuntos
Ferroptose , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/farmacologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Medicina de Precisão , Microambiente Tumoral
13.
Genes Dev ; 36(3-4): 133-148, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086862

RESUMO

The regeneration of peripheral nerves is guided by regeneration tracks formed through an interplay of many cell types, but the underlying signaling pathways remain unclear. Here, we demonstrate that macrophages are mobilized ahead of Schwann cells in the nerve bridge after transection injury to participate in building regeneration tracks. This requires the function of guidance receptor Plexin-B2, which is robustly up-regulated in infiltrating macrophages in injured nerves. Conditional deletion of Plexin-B2 in myeloid lineage resulted in not only macrophage misalignment but also matrix disarray and Schwann cell disorganization, leading to misguided axons and delayed functional recovery. Plexin-B2 is not required for macrophage recruitment or activation but enables macrophages to steer clear of colliding axons, in particular the growth cones at the tip of regenerating axons, leading to parallel alignment postcollision. Together, our studies unveil a novel reparative function of macrophages and the importance of Plexin-B2-mediated collision-dependent contact avoidance between macrophages and regenerating axons in forming regeneration tracks during peripheral nerve regeneration.


Assuntos
Regeneração Nervosa , Nervos Periféricos , Axônios/fisiologia , Moléculas de Adesão Celular , Macrófagos/metabolismo , Regeneração Nervosa/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo
14.
Sci Total Environ ; 786: 147452, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33975111

RESUMO

During past two decades, steroid hormones have raised significant public concerns due to their potential adverse effects on the hormonal functions of aquatic organisms and humans. Considering China being a big producer and consumer of steroid hormones, we summarize the current contamination status of steroid hormones in different environmental compartments in China, and preliminarily assess the associated risks to ecological systems. The results show that steroid hormones are ubiquitously present in Chinese surface waters where estrogens are the most studied steroids compared with androgens, progestogens and glucocorticoids. Estrone (E1), 17ß-estradiol (17ß-E2) and estriol (E3) are generally the dominant steroid estrogens in Chinese surface waters, whereas for the other steroids, androsterone (ADR), epi-androsterone (EADR), progesterone (PGT), cortisol (CRL) and cortisone (CRN) have relatively large contributions. Meanwhile, the investigations for the other environmental media such as particles, sediments, soils and groundwater have been limited, as well as for steroid conjugates and metabolites. The median risk quotients of most steroid hormones in surface waters and sediments are lower than 1, indicating low to moderate risks to local organisms. This review provides a full picture of steroid distribution and ecological risks in China, which may be useful for future monitoring and risk assessment. More studies may focus on the analysis of steroid conjugates, metabolites, solid phase fractions, analytical method development and acute/chronic toxicities in different matrices to pursue a more precise and holistic risk assessment.


Assuntos
Poluentes Químicos da Água , China , Monitoramento Ambiental , Estrogênios/análise , Estrona/análise , Humanos , Medição de Risco , Poluentes Químicos da Água/análise
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(3): 282-285, 2021 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-33751543

RESUMO

OBJECTIVE: To delineate the characteristics of a novel HLA-DQB1 allele identified during routine HLA matching in a leukemia family. METHODS: The mother and brother of the patient were subjected to PCR sequence-specific oligonucleotide probe (SSOP), PCR sequence-based typ1ing (SBT), as well as next-generation sequencing (NGS). RESULTS: PCR-SBT revealed that the patient's mother and brother's HLA-DQB1 sequences did not fully match with any known allele combination. NGS revealed that the novel allele has differed from the closest matched DQB1*03:02 with a T>G substitution at position 233 in exon 2, which resulted in substitution of Valine at codon 46 by Glycine. Pedigree analysis confirmed that the novel HLA-DQB1 allele was inherited from his mother. CONCLUSION: A novel HLA-DQB1 allele has been identified through next generation sequencing and was officially named as HLA-DQB1*03:362 by the World Health Organization HLA Factor Nomenclature Committee.


Assuntos
Cadeias beta de HLA-DQ , Nucleotídeos , Análise de Sequência de DNA , Alelos , Sequência de Bases , Cadeias beta de HLA-DQ/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
16.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637528

RESUMO

The innate immune response influences neural repair after spinal cord injury (SCI). Here, we combined myeloid-specific transcriptomics and single-cell RNA sequencing to uncover not only a common core but also temporally distinct gene programs in injury-activated microglia and macrophages (IAM). Intriguingly, we detected a wide range of microglial cell states even in healthy spinal cord. Upon injury, IAM progressively acquired overall reparative, yet diversified transcriptional profiles, each comprising four transcriptional subtypes with specialized tasks. Notably, IAM have both distinct and common gene signatures as compared to neurodegeneration-associated microglia, both engaging phagocytosis, autophagy, and TyroBP pathways. We also identified an immediate response microglia subtype serving as a source population for microglial transformation and a proliferative subtype controlled by the epigenetic regulator histone deacetylase 3 (HDAC3). Together, our data unveil diversification of myeloid and glial subtypes in SCI and an extensive influence of HDAC3, which may be exploited to enhance functional recovery.


Assuntos
Traumatismos da Medula Espinal , Humanos , Macrófagos/metabolismo , Microglia/metabolismo , Fagocitose/genética , Recuperação de Função Fisiológica/fisiologia , Medula Espinal , Traumatismos da Medula Espinal/genética
17.
Mol Biol Evol ; 38(6): 2582-2596, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33616658

RESUMO

Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.


Assuntos
Evolução Molecular , Genes MHC Classe I , Células Matadoras Naturais/fisiologia , Receptores KIR/genética , China , Antígenos HLA-A/metabolismo , Antígenos HLA-B/metabolismo , Humanos , Receptores KIR/metabolismo
18.
Commun Biol ; 4(1): 145, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514835

RESUMO

Infiltrative growth is a major cause of high lethality of malignant brain tumors such as glioblastoma (GBM). We show here that GBM cells upregulate guidance receptor Plexin-B2 to gain invasiveness. Deletion of Plexin-B2 in GBM stem cells limited tumor spread and shifted invasion paths from axon fiber tracts to perivascular routes. On a cellular level, Plexin-B2 adjusts cell adhesiveness, migratory responses to different matrix stiffness, and actomyosin dynamics, thus empowering GBM cells to leave stiff tumor bulk and infiltrate softer brain parenchyma. Correspondingly, gene signatures affected by Plexin-B2 were associated with locomotor regulation, matrix interactions, and cellular biomechanics. On a molecular level, the intracellular Ras-GAP domain contributed to Plexin-B2 function, while the signaling relationship with downstream effectors Rap1/2 appeared variable between GBM stem cell lines, reflecting intertumoral heterogeneity. Our studies establish Plexin-B2 as a modulator of cell biomechanics that is usurped by GBM cells to gain invasiveness.


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular , Glioblastoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fenômenos Biomecânicos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Junções Célula-Matriz/genética , Junções Célula-Matriz/metabolismo , Junções Célula-Matriz/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos ICR , Camundongos SCID , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , Semaforinas/genética , Semaforinas/metabolismo , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Proteínas de Sinalização YAP , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
19.
J Gene Med ; 23(1): e3281, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33025624

RESUMO

BACKGROUND: Cervical cancer seriously threatens both the health and life of women. We aimed to investigate whether RNA interference of long non-coding RNA (lncRNA) DCST1-AS1 could promote miR-874-3p expression to affect the proliferation, migration and invasion of cervical cancer cells. METHODS: DCST1-AS1 expression levels in cervical cancer cells and transfection effects were detected by quantitative reverse transcriptase-polymerase chain reaction analysis. Proliferation, invasion and migration of cells were separately shown by cell-counting kit-8, wound healing and transwell assays, and relative protein expression was determined by western blot analysis. Dual-luciferase reporter and RNA immunoprecipitation assays verified the interaction of DCST1-AS1 and miR-874-3p. RESULTS: DCST1-AS1 expression was increased in cervical cancer tissues and cells. The DCST1-AS1 expression in Hela and SiHa cells was the highest, and so the cells were selected for the next experiment. Inhibition of DCST1-AS1 suppressed the proliferation, invasion and migration of cervical cancer cells and decreased the expression of KI67, proliferating cell nuclear antigen, matrix metalloproteinase (MMP)-2 and MMP-9. miR-874-3p expression was increased when cells were transfected with miR-874-3p mimic or shRNA-DCST1-AS1-1, and DCST1-AS1 expression was down-regulated when cells were transfected with miR-874-3p mimic. DCST1-AS1 can directly target miR-874-3p. Furthermore, inhibition of miR-874-3p could effectively alleviate the effect of inhibition of DCST1-AS1 with respect to the proliferation, invasion and migration of cervical cancer cells. CONCLUSIONS: Inhibition of DCST1-AS1 suppressed the proliferation, migration and invasion of cervical cancer cells by increasing miR-874-3p expression, which could be alleviated by the inhibition of miR-874-3p.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/genética , Ubiquitina-Proteína Ligases/genética , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Genes Reporter , Humanos
20.
Neurooncol Adv ; 2(1): vdaa134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33241215

RESUMO

BACKGROUND: Longitudinal tracking of tumor growth using noninvasive bioluminescence imaging (BLI) is a key approach for studies of in vivo cancer models, with particular relevance for investigations of malignant gliomas in rodent intracranial transplant paradigms. Akaluciferase (Akaluc) is a new BLI system with higher signal strength than standard firefly luciferase (Fluc). Here, we establish Akaluc BLI as a sensitive method for in vivo tracking of glioma expansion. METHODS: We engineered a lentiviral vector for expression of Akaluc in high-grade glioma cell lines, including patient-derived glioma stem cell (GSC) lines. Akaluc-expressing glioma cells were compared to matching cells expressing Fluc in both in vitro and in vivo BLI assays. We also conducted proof-of-principle BLI studies with intracranial transplant cohorts receiving chemoradiation therapy. RESULTS: Akaluc-expressing glioma cells produced more than 10 times higher BLI signals than Fluc-expressing counterparts when examined in vitro, and more than 100-fold higher signals when compared to Fluc-expressing counterparts in intracranial transplant models in vivo. The high sensitivity of Akaluc permitted detection of intracranial glioma transplants starting as early as 4 h after implantation and with as little as 5000 transplanted cells. The sensitivity of the system allowed us to follow engraftment and expansion of intracranial transplants of GSC lines. Akaluc was also robust for sensitive detection of in vivo tumor regression after therapy and subsequent relapse. CONCLUSION: Akaluc BLI offers superior sensitivity for in vivo tracking of glioma in the intracranial transplant paradigm, facilitating sensitive approaches for the study of glioma growth and response to therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA