Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609922

RESUMO

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fotoquimioterapia , Biomimética , Linfócitos T CD8-Positivos , Decitabina/farmacologia , Terapia Fototérmica , Neoplasias/tratamento farmacológico
2.
Acta Biomater ; 180: 423-435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641183

RESUMO

Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: F127@TEM@aPD-1 show unique advantages in cancer treatment. When injected subcutaneously, F127@TEM@aPD-1 can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.


Assuntos
Preparações de Ação Retardada , Hidrogéis , Linfonodos , Células T de Memória , Receptor de Morte Celular Programada 1 , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Linfonodos/imunologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Células T de Memória/efeitos dos fármacos , Células T de Memória/imunologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/farmacocinética , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Feminino , Camundongos Endogâmicos C57BL , Humanos
3.
Quant Imaging Med Surg ; 14(2): 1577-1590, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415138

RESUMO

Background: Fallopian tubal tuberculosis (FTTB), which typically presents with non-specific clinical symptoms and mimics ovarian malignancies clinically and radiologically, often affects young reproductive females and can lead to infertility if not promptly managed. Early diagnosis by imaging modalities is crucial for initiating timely anti-tuberculosis (anti-TB) treatment. Currently, comprehensive radiological descriptions of this relatively rare disease are limited. We aimed to comprehensively investigate the computed tomography (CT) and magnetic resonance imaging (MRI) characteristics of FTTB in patients from the Kashi area, which has the highest incidence of TB in China, to extend radiologists' understanding of this disease. Methods: We conducted a retrospective cross-sectional study of 26 patients diagnosed with FTTB at the First People's Hospital of Kashi Area. All the patients underwent abdominal and pelvic contrast-enhanced CT examinations and/or pelvic contrast-enhanced MRI from January 2017 to June 2022. The imaging findings were evaluated in consensus by two experienced radiologists specialized in abdominal and pelvic imaging. The evaluated sites included the fallopian tubes, ovaries, peritoneum, mesentery, retroperitoneal nodes, and parailiac nodes. The patient characteristics are reported using descriptive statistics. The patient imaging results are presented as percentages. The normally distributed continuous variables are reported as the mean ± standard deviation (SD), and otherwise as the median with the interquartile range (IQR). Results: The median age of the patients was 27 years (IQR: 25-34 years). Bilateral involvement of the fallopian tubes was observed in all patients. The tubal wall appeared coarse with tiny intraductal nodules in 96% (25 of 26) of the patients. The mean CT value of the tubal contents was 34 Hounsfield units (HUs; SD: 3.3 HUs). Ascites was present in 92% (24 of 26) of the patients, with 20 patients showing encapsulated effusion. Among these patients, 20 exhibited the highest CT values of ascites (>20 HUs). Linear enhancement of the parietal peritoneum was observed in 88% (23 of 26) of the patients, of whom 22 had peritoneal nodules measuring a median diameter of 0.4 cm (IQR: 0.3-0.6 cm). Eight patients had retroperitoneal and parailiac nodal enlargement, of whom two showed nodal necrosis, and none displayed nodal calcification. Conclusions: FTTB is consistently accompanied by tuberculous peritonitis. FTTB typically presents with tubal dilation, and coarseness and nodules in the lumen, as well as intraductal caseous material and calcification. Tuberculous peritonitis exhibits high-density ascites, peritoneal adhesion, linear enhancement of the parietal peritoneum, and tiny peritoneal nodules. The co-occurrence of these features strongly suggests a diagnosis of FTTB.

4.
Bioact Mater ; 33: 532-544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38162511

RESUMO

The clinical application of cancer immunotherapy is unsatisfied due to low response rates and systemic immune-related adverse events. Microwave hyperthermia can be used as a synergistic immunotherapy to amplify the antitumor effect. Herein, we designed a Gd-based metal-organic framework (Gd-MOF) nanosystem for MRI-guided thermotherapy and synergistic immunotherapy, which featured high performance in drug loading and tumor tissue penetration. The PD-1 inhibitor (aPD-1) was initially loaded in the porous Gd-MOF (Gd/M) nanosystem. Then, the phase change material (PCM) and the cancer cell membrane were further sequentially modified on the surface of Gd/MP to obtain Gd-MOF@aPD-1@CM (Gd/MPC). When entering the tumor microenvironment (TME), Gd/MPC induces immunogenic death of tumor cells through microwave thermal responsiveness, improves tumor suppressive immune microenvironment and further enhances anti-tumor ability of T cells by releasing aPD-1. Meanwhile, Gd/MPC can be used for contrast-enhanced MRI. Transcriptomics data revealed that the downregulation of MSK2 in cancer cells leads to the downregulation of c-fos and c-jun, and ultimately leads to the apoptosis of cancer cells after treatment. In general, Gd/MPC nanosystem not only solves the problem of system side effect, but also achieves the controlled drug release via PCM, providing a promising theranostic nanoplatform for development of cancer combination immunotherapy.

5.
J Exp Bot ; 75(5): 1530-1546, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976211

RESUMO

Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum. Overexpression of RD19, but not RD19 protease-inactive catalytic mutants, in Arabidopsis transgenic lines caused EDS1- and PAD4-dependent autoimmunity and enhanced pathogen resistance. In these lines, RD19 maturation to a pro-form required its catalytic residues, suggesting that RD19 undergoes auto-processing. In transient assays, PAD4 interacted preferentially with the RD19 pro-protease and promoted its nuclear accumulation in leaf cells. Our results lead us to propose a model for PAD4-stimulated defense potentiation. PAD4 promotes maturation and nuclear accumulation of processed RD19, and RD19 then stimulates EDS1-PAD4 dimer activity to confer pathogen resistance. This study highlights potentially important additional PAD4 functions that eventually converge on canonical EDS1-PAD4 dimer signaling in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Proteases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Cisteína Proteases/genética , Fitoalexinas , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética
6.
Chem Biol Interact ; 388: 110852, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145796

RESUMO

Characterized by bone mass loss, osteoporosis is an orthopedic disease typically found in postmenopausal women and aging individuals. Consistent with its pathogenesis summarized as an imbalance in bone formation/resorption, current pharmacologically therapeutic strategies for osteoporosis mainly aim to promote bone formation or/and inhibit bone resorption. However, few effective drugs with mild clinical side effects have been developed, making it a well-concerned issue to seek appropriate drugs for osteoporosis. In this study, we investigated the effect of ellagic acid (EA) on osteogenesis in vitro and in vivo and searched for its molecular mechanism. Here, we showed that EA promoted osteogenic differentiation of MSCs, increased mRNA and protein expression levels of osteoblast marker genes Runt-related transcription factor2, Osterix, Alkaline phosphatase, Collagen type I alpha 1, Osteopontin and Osteocalcin. Furthermore, ovariectomized mice with orally administered EA (10 mg/kg, 50 mg/kg) had significantly higher bone mass than those in controls. And experiments such as fluorescence double-labeling and enzyme-linked immunosorbent assay also demonstrated that EA could promote osteogenesis in vivo. To probe the molecular mechanism of EA, we performed RNA sequencing analysis using EA-treated BMSCs. Significant up-regulation of SMAD2/3 transcription factors was identified by RNA-seq, and it was confirmed in vitro that EA promoted bone formation by activating the SMAD2/3 signaling pathway. Evidence from our present experiments indicates that EA may be a promising candidate for clinical treatment for osteoporosis in future.


Assuntos
Reabsorção Óssea , Células-Tronco Mesenquimais , Osteoporose , Camundongos , Feminino , Humanos , Animais , Osteogênese , Ácido Elágico/farmacologia , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoblastos/metabolismo , Diferenciação Celular , Proteína Smad2/metabolismo
7.
Front Microbiol ; 14: 1253025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954233

RESUMO

Cancer remains a significant global challenge, with an estimated 47% increase in cancer patients from 2020 to 2040. Increasing research has identified microorganism as a risk factor for cancer development. The oral cavity, second only to the colon, harbors more than 700 bacterial species and serves as a crucial microbial habitat. Although numerous epidemiological studies have reported associations between oral microorganisms and major systemic tumors, the relationship between oral microorganisms and cancers remains largely unclear. Current research primarily focuses on respiratory and digestive system tumors due to their anatomical proximity to the oral cavity. The relevant mechanism research mainly involves 47% dominant oral microbial population that can be cultured in vitro. However, further exploration is necessary to elucidate the mechanisms underlying the association between oral microbiota and tumors. This review systematically summarizes the reported correlations between oral microbiota and common cancers while also outlining potential mechanisms that may guide biological tumor treatment.

8.
Mol Oncol ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666495

RESUMO

Bacteria are the causative agents of various infectious diseases; however, the anti-tumor effect of some bacterial species has attracted the attention of many scientists. The human oral cavity is inhabited by abundant and diverse bacterial communities and some of these bacterial communities could play a role in tumor suppression. Therefore, it is crucial to find oral bacterial species that show anti-tumor activity on oral cancers. In the present study, we found that a high abundance of Porphyromonas gingivalis, an anaerobic periodontal pathogen, in the tumor microenvironment (TME) was positively associated with the longer survival of patients with oral squamous cell carcinoma (OSCC). An in vitro assay confirmed that P. gingivalis accelerated the death of OSCC cells by inducing cell cycle arrest at the G2/M phase, thus exerting its anti-tumor effect. We also found that P. gingivalis significantly decreased tumor growth in a 4-nitroquinoline-1-oxide-induced in situ OSCC mouse model. The transcriptomics data demonstrated that P. gingivalis suppressed the biosynthesis of mucin O-glycan and other O-glycans, as well as the expression of chemokines. Validation experiments further confirmed the downregulation of mucin-1 (MUC1) and C-X-C motif chemokine 17 (CXCL17) expression by P. gingivalis treatment. Flow cytometry analysis showed that P. gingivalis successfully reversed the immunosuppressive TME, thereby suppressing OSCC growth. In summary, the findings of the present study indicated that the rational use of P. gingivalis could serve as a promising therapeutic strategy for OSCC.

9.
Genomics ; 115(5): 110687, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454940

RESUMO

PURPOSE: As the most abundant RNA modification, N6-methyladenosine (m6A) methylation plays crucial roles in various diseases. The aim of this study is to comprehensively map the landscape of the mRNA m6A modification pattern in Barrett's esophagus (BE) in order to find key genes and potential therapy for BE and even esophageal adenocarcinoma (EAC). METHODS: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-sequencing (RNA-seq) were performed to compare the difference in mRNA m6A methylation and differentially expressed mRNAs between BE and normal control (NC) tissues. Bioinformatics analysis was used to describe the m6A modification pattern and specific genes in BE and NC tissues. RESULTS: Through MeRIP-seq, we obtained m6A methylation profiling in BE and NC tissues. In total, 11,026 unique peaks were detected in the BE groups, whereas 8564 unique peaks were detected in the NC groups. Peaks were primarily enriched within CDS with GGACU motifs and most of the peaks were within 1000 bp in width. Moreover, functional enrichment analysis demonstrated that hypermethylated and hypomethylated genes were significantly enriched in coronavirus disease pathway, calcium signaling pathway and MAPK signaling pathways. Furthermore, PPI network was conducted and 18 hub genes were identified via STRING database and Cystoscope. Among them, ACTA1, CDC20, CKM, KIF20a, MYH11, TPM2, MYL9, DES, TNNT3 were overexpressed in EAC in the GEPIA gene bank and TPM1, KIF20a impaired patients' survival in the Kaplan-Meier plotter database. Finally, functional enrichment analysis demonstrated that co-expressed genes of TPM1 were significantly enriched in calcium signaling pathway, cGMP-PKG signaling pathway and PI3K-Akt signaling pathway. CONCLUSION: Our study is the first to perform comprehensive and transcriptome-wide maps to identify the potential roles played by m6A methylation in BE, which widely involved in oxidative stress. This foresees a guiding role in revealing the molecular mechanism of m6A-mediated genes that govern the pathogenesis and progression of BE and EAC.

10.
J Bone Miner Res ; 38(5): 775-791, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907987

RESUMO

Osteoporosis is a common bone disease caused by an imbalance of bone resorption and formation that results in a loss of total bone density. SMAD2/3 signal transduction is known to play a crucial role in osteogenic differentiation through transforming growth factor-beta (TGF-ß). By screening a library of small-molecule compounds, the current study identifies higenamine (HG) as an active osteogenic agent that could be a therapeutic candidate for osteoporosis. In vitro data demonstrated that HG effectively induced expressions of osteogenic markers in mouse bone marrow stromal cell (BMSCs) and preosteoblastic cell cultures. Further, HG treatment resulted in enhanced bone formation and prevented accelerated bone loss on two animal models that mimic spontaneous senile osteoporosis and postmenopausal osteoporosis. IQ motif-containing GTPase-activating protein 1 (IQGAP1) was confirmed as a novel target of HG, where HG appears to bind to the Glu-1019 site of IQGAP1 to exert its osteogenic effects. Data subsequently suggested that HG promoted phosphorylation of SMAD2/3 and regulated the SMAD2/3 pathway by inhibiting SMAD4 ubiquitination. Overall, the findings highlight HG as a new small-molecule drug to promote bone formation through SMAD2/3 pathway in osteoporosis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteogênese , Osteoporose , Camundongos , Animais , Transdução de Sinais , Diferenciação Celular , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Estrogênios
11.
J Clin Med ; 12(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36675491

RESUMO

As a typical hallmark of solid tumors, hypoxia affects the effects of tumor radiotherapy, chemotherapy, and photodynamic therapy. Therefore, targeting the hypoxic tumor microenvironment (TME) is a promising treatment strategy for cancer therapy. Here, we prepared an Albumin Human Serum (HSA)-coated perfluorocarbon (PFC) carrying oxygen (PFC@O2) to minimize OSCC hypoxia. The results showed that PFC@O2 significantly downregulated the expression of HIF-1α and the number of M2-like macrophages in vitro. Furthermore, PFC@O2 effectively inhibited the growth of oral squamous cell carcinoma (OSCC) and reduced the proportion of negative immunoregulatory cells, including myeloid-derived suppressor cells (MDSCs) and M2-like macrophages of TME in a 4-nitroquinoline N-oxide (4NQO)-induced mouse model. Conversely, the infiltration of CD4+ and CD8+ T cells was significantly increased in TME, suggesting that the anti-tumor immune response was enhanced. However, we also found that hypoxia-relative genes expression was positively correlated with CD68+/CD163+ TAMs in human tissue specimens. In summary, PFC@O2 could effectively inhibit the progression of OSCC by alleviating hypoxia, which provides a practical basis for gas therapy and gas synergistic therapy for OSCC.

12.
Cancer Immunol Immunother ; 72(5): 1315-1326, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36436019

RESUMO

Myeloid-derived suppressor cells (MDSCs) are one of the tumor-infiltrating immune cell population, which play a powerful role in inhibiting anti-tumor immune response. Our previous studies have shown that STAT3 blockade can decrease the number of MDSCs in tumor microenvironment. However, it is unclear for the molecular mechanism of down-regulation MDSCs with STAT3 inhibitor. In this study, we first detected and analyzed the expression of p-STAT3, CD33, CD14, CD39 and CD73 via oral squamous cell carcinoma (OSCC) tissue array. We found that p-STAT3 was positively correlated with CD14, CD33, CD39, and CD73 in OSCC patient specimens. Then we found STAT3 blockade with S3I-201 reduced the expression of CD39/CD73 and the synthesis of adenosine, as well as inhibiting monocytes to MDSCs differentiation in vitro. Furthermore, we found that S3I-201 displayed prominent anti-tumor efficacy in C3H/He OSCC mouse model via inhibiting CD39/CD73-adenosine signal pathway and decreasing MDSCs. These results suggest that STAT3 signal can induce the differentiation of monocytes into MDSCs in tumor microenvironment depending on CD39/CD73-adenosine signal pathway and STAT3 blockade is a promising therapeutic strategy for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Células Supressoras Mieloides , Animais , Camundongos , Adenosina/farmacologia , Adenosina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Diferenciação Celular , Neoplasias de Cabeça e Pescoço/metabolismo , Camundongos Endogâmicos C3H , Monócitos/metabolismo , Neoplasias Bucais/patologia , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral , 5'-Nucleotidase/metabolismo
13.
Oral Dis ; 29(3): 933-941, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34773344

RESUMO

Accumulated evidence indicates that immune cell populations play pivotal roles in the process of tumor initiation, progression, recurrence, metastasis, and immune escape. Ferroptosis is a form of regulating cell death in the nexus between metabolism, redox biology, and human health. Ferroptosis is considered as a vital important event in HNSCC, but the underling mechanism of regulating immune cell populations remains poorly understood. Our tissue microarray study showed that patients with high expression of GPX4 were related to poor survival. Moreover, the expression of GPX4 has been negatively associated with immunogenic cell death-related protein calreticulin in HNSCC tissue cohort. Further, RSL3 was used to induce ferroptosis in HNSCC xenograft of C3H/He mouse. We found that the occurrence of ferroptosis had significantly reduced the number of myeloid-derived suppressor cells (MDSCs) and tumor-associated M2-like macrophages (M2 TAMs) in tumor microenvironment. Meanwhile, the tumor-infiltrating CD4+ and CD8+ T cells were increased. And the calreticulin and HMGB1 may be potential candidate proteins improving the immunosuppressive tumor microenvironment. Taken together, our project suggests that ferroptosis can promote anti-tumor immune response by reversing immunosuppressive microenvironment, indicating that ferroptosis inducer is a promising therapeutic strategy in HNSCC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Calreticulina , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C3H , Imunidade , Microambiente Tumoral
14.
Oral Dis ; 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36056698

RESUMO

OBJECTIVES: Our study elucidates the prognostic role of cluster of differentiation (CD) 24 expression in oral squamous cell carcinoma (OSCC) and determines whether targeting CD24 enhances the anti-tumor immune response by inhibiting tumor-associated macrophages (TAMs). MATERIALS AND METHODS: The expression of CD24 and CD68 was analyzed immunohistochemically via tissue microarrays constructed using 56 cohorts of patients with OSCC and 20 control specimens. Further, CD24 was inhibited in an allograft squamous cell carcinoma (SCC) related mouse model with CD24mAb to determine the tumor volume and weight. Changes in immune cells such as TAMs and T cells in the tumor microenvironment (TME) were analyzed by Flow cytometry. The expression of CD4, CD8, and Ki67 was analyzed via immunohistochemistry. The inhibition of CD24 was confirmed by Western blot and immunohistochemistry. RESULTS: CD24 was overexpressed in OSCC. High expression of CD24 indicated poor survival in patients with OSCC (p = 0.0334). CD24 expression was significantly correlated with CD68 (p = 0.0424). The inhibition of CD24 delayed tumor growth in vivo. A decrease in TAMs number and an increase in T cell number were confirmed, while the ability of tumor proliferation was impaired. CONCLUSION: Targeting CD24 could enhance anti-tumor immune response by inhibiting TAMs.

15.
Front Cell Dev Biol ; 10: 748862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237591

RESUMO

Growing evidence suggests that adverse intrauterine environments could affect the long-term health of offspring. Recent evidence indicates that gestational diabetes mellitus (GDM) is associated with neurocognitive changes in offspring. However, the mechanism remains unclear. Using a GDM mouse model, we collected hippocampi, the structure critical to cognitive processes, for electron microscopy, methylome and transcriptome analyses. Reduced representation bisulfite sequencing (RRBS) and RNA-seq in the GDM fetal hippocampi showed altered methylated modification and differentially expressed genes enriched in common pathways involved in neural synapse organization and signal transmission. We further collected fetal mice brains for metabolome analysis and found that in GDM fetal brains, the metabolites displayed significant changes, in addition to directly inducing cognitive dysfunction, some of which are important to methylation status such as betaine, fumaric acid, L-methionine, succinic acid, 5-methyltetrahydrofolic acid, and S-adenosylmethionine (SAM). These results suggest that GDM affects metabolites in fetal mice brains and further affects hippocampal DNA methylation and gene regulation involved in cognition, which is a potential mechanism for the adverse neurocognitive effects of GDM in offspring.

16.
Front Endocrinol (Lausanne) ; 12: 710221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531826

RESUMO

Mounting evidence has shown that intrauterine hyperglycemia exposure during critical stages of development may be contributing to the increasing prevalence of diabetes. However, little is known about the mechanisms responsible for offspring metabolic disorder. In this present study, we explored intrauterine hyperglycemia exposure on fetal pancreatic metabolome, and its potential link to impaired glucose tolerance in adult offspring. Here, using a GDM mouse model, we found the metabolome profiling of pancreas from male and female fetus showing altered metabolites in several important pathways, including 5-methylcytosine, α-KG, branched-chain amino acids, and cystine, which are associated with epigenetic modification, insulin secretion, and intracellular redox status, respectively. This finding suggests that intrauterine exposure to hyperglycemia could cause altered metabolome in pancreas, which might be a metabolism-mediated mechanism for GDM-induced intergenerational diabetes predisposition.


Assuntos
Biomarcadores/metabolismo , Diabetes Gestacional/fisiopatologia , Feto/metabolismo , Intolerância à Glucose/patologia , Hiperglicemia/patologia , Metaboloma , Útero/fisiopatologia , Animais , Epigênese Genética , Feminino , Feto/patologia , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Masculino , Pâncreas/metabolismo , Pâncreas/patologia , Gravidez , Fatores Sexuais
17.
J Pediatr Surg ; 56(2): 317-323, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32467037

RESUMO

BACKGROUND AND OBJECTIVES: Totally implantable venous access ports (TIVAPs) are essential in children who require long-term intermittent intravenous therapy. METHODS: Patients who needed to undergo TIVAP implantation were randomly assigned to the internal jugular vein group or the subclavian vein group. The medical histories, operative details and major complications from the time of port implantation to 48 h after port removal were collected. During the use of TIVAPs, satisfaction surveys were regularly conducted for the children and guardians and compared in the two groups. RESULTS: A total of 216 patients in the subclavian vein group and 199 patients in the internal jugular vein group were included. TIVAPs were successfully implanted in all children. The incidence of postoperative venous access occlusion in the subclavian vein group and internal jugular vein group was 1.5% and 5%, respectively, and the difference was statistically significant (P < 0.05). The average satisfaction score of the children and guardians in the subclavian vein group was 9.6 ±â€¯0.3, and that in the internal jugular vein group was 8.3 ±â€¯0.8. There was a significant difference between the 2 groups (P < 0.05). CONCLUSIONS: Subclavian vein should be the first choice for TIVAP implantation in children. THE LEVEL OF EVIDENCE RATING: Treatment study level I.


Assuntos
Cateterismo Venoso Central , Veias Jugulares , Cateteres de Demora , Criança , Humanos , Estudos Prospectivos , Punções
18.
Int J Mol Med ; 41(3): 1397-1408, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29286138

RESUMO

Ras-related C3 botulinum toxin substrate 1 (RAC1) is a member of the Rho family of small GTPases. Recent studies have reported that RAC1 serves an important role in colon cancer cell proliferation. The present study aimed to investigate the effects of RAC1 knockdown on cell proliferation, cell cycle progression and apoptosis of colon cancer cells. Lentivirus­mediated short hairpin RNA (shRNA) was used to knockdown RAC1 expression in colon cancer cell lines, and cell proliferation, apoptosis, cell cycle progression were evaluated by MTT assays and flow cytometry. The differences in mRNAs expression were identified between RAC1-knockdown cells and control cells using a mRNA microarray, following which quantitative PCR (qPCR) and western blot were employed to confirm the results of the mRNA microarray. The proliferative ability of colon cancer cells was significantly decreased following RAC1 knockdown, and RAC1 knockdown increased the apoptotic rate and enhanced cell cycle arrest at G1 phase in colon cancer cells. In addition, >1,200 known genes were demonstrated to be involved in RAC1­associated tumorigenic functions in SW620 colon cancer cells, as determined by gene chip analysis; these genes were associated with cell proliferation, cell cycle, apoptosis and metastasis. Furthermore, western blot analysis indicated that cyclin D1 was downregulated, whereas B­cell lymphoma 2­associated agonist of cell death (BAD) was upregulated following RAC1 knockdown in colon cancer cells. In conclusion, RAC1 silencing may suppress the proliferation of colon cancer cells by inducing apoptosis and cell cycle arrest. In addition, a large number of genes were revealed to be involved in the process, including BAD, which was upregulated and cyclin D1, which was downregulated. Further studies on these differentially expressed genes may provide a better understanding of the potential roles of RAC1 in colon carcinogenesis.


Assuntos
Neoplasias do Colo/patologia , Ciclina D1/genética , Regulação para Baixo/genética , Inativação Gênica , RNA Interferente Pequeno/metabolismo , Regulação para Cima/genética , Proteína de Morte Celular Associada a bcl/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Análise por Conglomerados , Neoplasias do Colo/genética , Biologia Computacional , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ensaio Tumoral de Célula-Tronco , Proteína de Morte Celular Associada a bcl/metabolismo
19.
Mol Med Rep ; 16(3): 2469-2476, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28737829

RESUMO

Circular RNAs (circRNAs) represent a newly identified class of non­coding RNA molecules, which interfere with gene transcription by adsorbing microRNAs (miRNAs). CircRNAs serve important roles in disease development and have the potential to serve as a novel class of biomarkers for clinical diagnosis. However, the role of circRNAs in the occurrence and development of gastric cancer (GC) remains unclear. In the present study, the expression profiles of circRNAs were compared between GC and adjacent normal tissues using a circRNA microarray, following which quantitative polymerase chain reaction (qPCR) was used to confirm the results of the circRNA microarray. Compared with the adjacent, normal mucosal tissues, 16 circRNAs were upregulated and 84 circRNAs were downregulated in GC. A total of 10 circRNAs were selected for validation in three pairs of GC and adjacent noncancerous tissues. The qPCR results were consistent with the findings of the microarray­based expression analysis. Of the circRNAs studied, only circRNA­0026 (hsa_circ_0000026) exhibited significantly different expression in GC (2.8­fold, P=0.001). Furthermore, online Database for Annotation, Visualization and Integrated Discovery annotation was used to predict circRNA­targeted miRNA­gene interactions. The analysis revealed that circRNA­0026 may regulate RNA transcription, RNA metabolism, gene expression, gene silencing and other biological functions in GC. In conclusion, differential expression of circRNAs may be associated with GC tumorigenesis, and circRNA­0026 is a promising biomarker for GC diagnosis and targeted therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , RNA/genética , Neoplasias Gástricas/genética , Transcriptoma , Regulação para Baixo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Circular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
20.
BMC Genomics ; 18(1): 189, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212626

RESUMO

BACKGROUND: Among twenty amino acids, methionine has a special role as it is coded by the translation initiation codon and methionyl-tRNAi (Met-tRNAi) is required for the assembly of the translation initiation complex. Thus methionine may play a special role in global gene regulation. Methionine has also been known to play important roles in cell growth, development, cancer, and aging. In this work, we characterize the translational and transcriptional programs induced by methionine restriction (MetR) and investigate the potential mechanisms through which methionine regulates gene expression, using the budding yeast S. cerevisiae as the model organism. RESULTS: Using ribosomal profiling and RNA-seq, we observed a broad spectrum of gene expression changes in response to MetR and identified hundreds of genes whose transcript level and/or translational efficiency changed significantly. These genes show clear functional themes, suggesting that cell slows down its growth and cell cycle progression and increases its stress resistance and maintenance in response to MetR. Interestingly, under MetR cell also decreases glycolysis and increases respiration, and increased respiration was linked to lifespan extension caused by caloric restriction. Analysis of genes whose translational efficiency changed significantly under MetR revealed different modes of translational regulation: 1) Ribosome loading patterns in the 5'UTR and coding regions of genes with increased translational efficiency suggested mechanisms both similar and different from that for the translational regulation of Gcn4 under general amino acid starvation condition; 2) Genes with decreased translational efficiency showed strong enrichment of lysine, glutamine, and glutamate codons, supporting the model that methionine can regulate translation by controlling tRNA thiolation. CONCLUSIONS: MetR induced a broad spectrum of gene expression changes at both the transcriptional and translational levels, with clear functional themes indicative of the physiological state of the cell under MetR. Different modes of translational regulation were induced by MetR, including the regulation of the ribosome loading at 5'UTR and regulation by tRNA thiolation. Since MetR extends the lifespan of many species, the list of genes we identified in this study can be good candidates for studying the mechanisms of lifespan extension.


Assuntos
Perfilação da Expressão Gênica , Metionina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Análise de Sequência de RNA , Transcrição Gênica/efeitos dos fármacos , Códon/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA