Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(9): 1437-1448, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33303990

RESUMO

Aflibercept, as a soluble decoy vascular endothelial growth factor receptor, Which has been used as a first-line monotherapy for cancers. Aflibercept often causes cardiovascular toxicities including hypertension, but the mechanisms underlying aflibercept-induced hypertension remain unknown. In this study we investigated the effect of short-term and long-term administration of aflibercept on blood pressure (BP), vascular function, NO bioavailability, oxidative stress and endothelin 1 (ET-1) in mice and cultured endothelial cells. We showed that injection of a single-dose of aflibercept (18.2, 36.4 mg/kg, iv) rapidly and dose-dependently elevated BP in mice. Aflibercept treatment markedly impaired endothelial-dependent relaxation (EDR) and resulted in NADPH oxidases 1 (NOX1)- and NADPH oxidases 4 (NOX4)-mediated generation of ROS, decreased the activation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) concurrently with a reduction in nitric oxide (NO) production and elevation of ET-1 levels in mouse aortas; these effects were greatly attenuated by supplementation of L-arginine (L-arg, 0.5 or 1.0 g/kg, bid, ig) before aflibercept injection. Similar results were observed in L-arg-pretreated cultured endothelial cells, showing markedly decreased ROS accumulation and AKT/eNOS/NO signaling impairment induced by aflibercept. In order to assess the effects of long-term aflibercept on hypertension and to evaluate the beneficial effects of L-arg supplementation, we administered these two drugs to WT mice for up to 14 days (at an interval of two days). Long-term administration of aflibercept resulted in a sustained increase in BP and a severely impaired EDR, which are associated with NOX1/NOX4-mediated production of ROS, increase in ET-1, inhibition of AKT/eNOS/NO signaling and a decreased expression of cationic amino acid transporter (CAT-1). The effects caused by long-term administration were greatly attenuated by L-arg supplementation in a dose-dependent manner. We conclude that aflibercept leads to vascular dysfunction and hypertension by inhibiting CAT-1/AKT/eNOS/NO signaling, increasing ET-1, and activating NOX1/NOX4-mediated oxidative stress, which can be suppressed by supplementation of L-arg. Therefore, L-arg could be a potential therapeutic agent for aflibercept-induced hypertension.


Assuntos
Arginina/farmacologia , Hipertensão/induzido quimicamente , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Recombinantes de Fusão/efeitos adversos , Doenças Vasculares/induzido quimicamente , Animais , Aorta/metabolismo , Aorta/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia
2.
J Mol Cell Cardiol ; 137: 34-45, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629736

RESUMO

Hypertensive cardiac remodeling is a major cause of heart failure. The immunoproteasome is an inducible form of the proteasome and its catalytic subunit ß5i (also named LMP7) is involved in angiotensin II-induced atrial fibrillation; however, its role in deoxycorticosterone-acetate (DOCA)-salt-induced cardiac remodeling remains unclear. C57BL/6 J wild-type (WT) and ß5i knockout (ß5i KO) mice were subjected to uninephrectomy (sham) and DOCA-salt treatment for three weeks. Cardiac function, fibrosis, and inflammation were evaluated by echocardiography and histological analysis. Protein and gene expression levels were analyzed by quantitative real-time PCR and immunoblotting. Our results showed that after 21 days of DOCA-salt treatment, ß5i expression and chymotrypsin-like activity were the most significantly increased factors in the heart compared with the sham control. Moreover, DOCA-salt-induced elevation of blood pressure, adverse cardiac function, chamber and myocyte hypertrophy, interstitial fibrosis, oxidative stress, and inflammation were markedly attenuated in ß5i KO mice. These findings were verified in ß5i inhibitor PR-957-treated mice. Moreover, blocking of PTEN (the gene of phosphate and tensin homolog deleted on chromosome ten) markedly attenuated the inhibitory effect of ß5i knockout on DOCA-salt-induced cardiac remodeling. Mechanistically, DOCA-salt stress upregulated the expression of ß5i, which promoted the degradation of PTEN and the activation of downstream signals (AKT/mTOR, TGF-ß1/Smad2/3, NOX, and NF-κB), which ultimately led to cardiac hypertrophic remodeling. This study provides new evidence of the critical role of ß5i in DOCA-salt-induced cardiac remodeling through the regulation of PTEN stability, and indicates that the inhibition of ß5i may be a promising therapeutic target for the treatment of hypertensive heart diseases.


Assuntos
Hipertensão/metabolismo , Hipertensão/fisiopatologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Remodelação Ventricular , Animais , Cardiomegalia/complicações , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Quimotripsina/metabolismo , Acetato de Desoxicorticosterona , Fibrose , Hipertensão/complicações , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Regulação para Cima
3.
Mol Nutr Food Res ; 63(24): e1900418, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655498

RESUMO

SCOPE: Cardiac fibrosis is a key feature of cardiac remodeling. Recently, a protective role for resveratrol (RES) in pressure-overload-induced cardiac hypertrophy and contractile dysfunction has been demonstrated. However, the effect of RES on cardiac fibrosis and diastolic function in this model remains unclear. METHODS AND RESULTS: Cardiac remodeling is induced in mice by transverse aortic constriction (TAC) for 2-4 weeks. RES is administered at dose of 5 or 50 mg kg-1  d-1 for 2 weeks. It is found that RES administration at 50 mg kg-1  d-1 significantly attenuates TAC-induced adverse cardiac systolic and diastolic function, fibrosis, inflammation, and oxidative stress via inhibiting PTEN degradation and the downstream mediators. However, RES at 5 mg kg-1  d-1 has no significant effects. RES at 50 mg kg-1  d-1 also ameliorates pre-established adverse cardiac function and remodeling induced by TAC. Treatment with PTEN inhibitor VO-OHpic (10 mg kg-1  d-1 ) for 2 weeks abolishes RES-mediated protective effects. Additionally, the effect of RES (100 µm) on inhibition of Ang II-induced fibroblast proliferation and activation in vitro is verified. CONCLUSIONS: The findings provide new evidence that RES plays a critical role in the progression of cardiac fibrosis and diastolic dysfunction, and suggest that RES may be a promising therapeutic agent for cardiac fibrosis.


Assuntos
Cardiotônicos/farmacologia , Coração/efeitos dos fármacos , Miocárdio/patologia , Resveratrol/farmacologia , Animais , Diástole/efeitos dos fármacos , Fibrose , Coração/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miocardite/tratamento farmacológico , Miocardite/etiologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
4.
Redox Biol ; 20: 390-401, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412827

RESUMO

Sustained cardiac hypertrophy is a major cause of heart failure (HF) and death. Recent studies have demonstrated that resveratrol (RES) exerts a protective role in hypertrophic diseases. However, the molecular mechanisms involved are not fully elucidated. In this study, cardiac hypertrophic remodeling in mice were established by pressure overload induced by transverse aortic constriction (TAC). Cardiac function was evaluated by echocardiography and invasive pressure-volume analysis. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein and gene expressions of signaling mediators and hypertrophic markers were examined. Our results showed that administration of RES significantly suppressed pressure overload-induced cardiac hypertrophy, fibrosis and apoptosis and improved in vivo heart function in mice. RES also reversed pre-established hypertrophy and restoring contractile dysfunction induced by chronic pressure overload. Moreover, RES treatment blocked TAC-induced increase of immunoproteasome activity and catalytic subunit expression (ß1i, ß2i and ß5i), which inhibited PTEN degradation thereby leading to inactivation of AKT/mTOR and activation of AMPK signals. Further, blocking PTEN by the specific inhibitor VO-Ohpic significantly attenuated RES inhibitory effect on cardiomyocyte hypertrophy in vivo and in vitro. Taken together, our data suggest that RES is a novel inhibitor of immunoproteasome activity, and may represent a promising therapeutic agent for the treatment of hypertrophic diseases.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Resveratrol/farmacologia , Animais , Biomarcadores , Pressão Sanguínea , Cardiomegalia/diagnóstico , Cardiomegalia/tratamento farmacológico , Cardiotônicos/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Testes de Função Cardíaca , Masculino , Camundongos , Modelos Moleculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA