Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(7): 1920-1935, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36380687

RESUMO

Radiotherapy, as an important primary treatment, has effectively improved the survival of patients with cervical cancer (CC). Some patients, however, do not benefit optimally from radiotherapy because of radio-resistance. Therefore, identifying radio-resistance biomarkers and unravelling the underlying mechanisms is of critical importance for these patients. In the present study, we found significant upregulation of hepatocyte nuclear factor 1-alpha (HNF1α) expression in radio-resistant cervical cancer tissues and cell lines. Depletion of HNF1α reduced and overexpression of HNF1α promoted the resistance of CC cells to irradiation in vitro and in vivo. HNF1α positively regulated DNA repair protein RAD51 homologue 4 (RAD51D) at the protein level but not at the mRNA level. Mechanistically, upregulation of HNF1α enhanced YTH domain-containing family protein 3 (YTHDF3) transcription, which in turn promoted RAD51D mRNA N6 -methyladenosine (m6A) modification. YTHDF3 mediates HNF1α regulation of cervical cancer radio-resistance by promoting RAD51D translation in an m6A-dependent manner. The HFN1α/YTHDF3/RAD51D regulatory axis was found to play a critical role in conferring radio-resistance of CC cells. In conclusion, dysregulation of the HFN1α/YTHDF3/RAD51D axis may promote the radio-resistance of CC cells. Blocking this pathway may provide therapeutic benefits against CC radio-resistance.


Assuntos
Fator 1-alfa Nuclear de Hepatócito , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Fator 1-alfa Nuclear de Hepatócito/genética , RNA Mensageiro/genética , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia
2.
J Transl Med ; 20(1): 507, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335371

RESUMO

BACKGROUND: Radioresistance is a major cause of treatment failure in esophageal squamous cell carcinoma (ESCC) radiotherapy, and the underlying mechanisms of radioresistance are still unclear. Irradiation (IR) stimulates changes in tumor-derived exosome contents, which can be taken up by recipient cells, playing an important role in the proliferation, cell cycle and apoptosis of recipient cells. This study investigated the effect of IR-induced exosomal high mobility group box 1 (HMGB1) on radioresistance in ESCC cells. METHODS: Plasma exosomes were isolated from 21 ESCC patients and 24 healthy volunteers, and the expression of HMGB1 was examined. Then, the therapeutic effect of radiotherapy was analyzed according to the different expression levels of plasma exosomal HMGB1 in ESCC patients. The uptake of exosomes by recipient cells was verified by immunofluorescence staining, and the localization of exosomes and HMGB1 in cells before and after IR was evaluated. The effects of IR-induced exosomes on cell proliferation, invasion, apoptosis, cell cycle distribution and radioresistance after HMGB1 knockdown were verified. Moreover, western blotting was used to measure changes in the expression of cyclin B1, CDK1, Bax, Bcl2, phosphorylated histone H2AX and the PI3K/AKT/FOXO3A pathway in the HMGB1-knockdown exosome group and the negative control group. RESULTS: The expression of HMGB1 in ESCC plasma exosomes was significantly increased compared with that in healthy volunteers, and high expression of HMGB1 in plasma exosomes was associated with radioresistance (P = 0.016). IR-induced the release of exosomal HMGB1 and promoted proliferation and radioresistance in recipient cells, with a sensitization enhancement ratio (SER) of 0.906 and 0.919, respectively. In addition, IR-induced exosomal HMGB1 promotes G2/M phase arrest by regulating the proteins cyclin B1 and CDK1, cooperating with the proteins Bax and Bcl2 to reduce the apoptosis rate through the PI3K/AKT/FOXO3A signaling pathway, and participated in IR-induced DNA damage repair through γH2AX. CONCLUSION: These findings indicate that high expression of plasma exosomal HMGB1 is associated with an adverse radiotherapy response. IR-induced exosomal HMGB1 enhances the radioresistance of ESCC cells.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGB1 , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Ciclina B1/metabolismo , Proteína X Associada a bcl-2 , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células
3.
Mol Biol Rep ; 49(12): 11933-11945, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36260180

RESUMO

BACKGROUND: To explore the effect of HMGB1 on the radio-sensitivity of esophageal cancer cells through regulating the PI3K/Akt/ATM pathway. METHODS AND RESULTS: We observed the expression of HMGB1 and p-ATM in biopsies of esophageal cancer patients with immunohistochemical staining. Western blot and RT-qPCR were applied to detect the protein and RNA related to PI3K/Akt/ATM pathway, respectively. In addition, we inhibited the PI3K/Akt pathway with ly294002 and activated it with IGF1, then we explored the invasion, proliferation ability, and apoptosis of esophageal cancer cells in vitro by transwell, CCK8 assay, and flow cytometry respectively. In vivo, xenograft tumor model was established in nude mice to study the effect of HMGB1 on radioresistance via PI3K/AKT/ATM Signaling Pathway. The survival rate in patients with single positive/double negative expression of HMGB1 and p-ATM was significantly higher than in those with both positive expression of HMGB1 and p-ATM, the depletion of HMGB1 combined with ly294002 significantly inhibited cell proliferation and invasion ability, meanwhile, the addition of IGF1 reversed it. Meanwhile, depletion of HMGB1 and ly294002 promoted apoptosis and arrested the cancer cells in G0/G1 cell cycle with the decreased expression of Cyclin D1 and CDK4 and improved P16. We further validated these results in vivo, the application of HMGB1 silencing promoted apoptosis of xenograft tumors after radiation, especially combined with pathway inhibitor ly294002. CONCLUSIONS: Esophageal cancer patients with high expression of HMGB1 and p-ATM have a poor prognosis after chemo-radiotherapy. Down-regulation of HMGB1 may promote the radio-sensitivity of esophageal cancer cells through regulating PI3K/Akt/ATM pathway.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGB1 , Camundongos , Animais , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
4.
J Cancer ; 13(9): 2717-2726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812184

RESUMO

Esophageal cancer is a common malignant disease that is generally treated with radiotherapy. High mobility group box 1 (HMGB1) plays an essential role in tumor cell proliferation, migration, and cell cycle progression. Here, we aimed to clarify the effects of HMGB1 on radioresistance in esophageal squamous cell carcinoma (ESCC) cell lines and patient survival. We performed immunohistochemistry for HMGB1 in biopsy samples of 39 stage I-III ESCC patients grouped by HMGB1 expression status. Then, 1-, 3-, 5-, and 10-year overall survival outcomes were calculated by Kaplan-Meier survival analysis. The cellular localization of HMGB1 was examined before and after irradiation by Immunofluorescence staining. Stable cell lines (KYSE30 and KYSE510) with differential HMGB1 expression were constructed using lentiviruses. Furthermore, we examined phosphorylated histone H2AX (γ-H2AX) expression in both HMGB1 overexpression and negative control groups by western blotting. HMGB1-negative expression was associated with superior ESCC patient 10-year survival (P=0.016). HMGB1 overexpression promoted cell migration, proliferation, and radioresistance and mitigated cell cycle arrest at the G0/G1 phase induced by irradiation. This demonstrates that HMGB1-positive expression is correlated with unfavorable clinical outcomes, and HMGB1 overexpression may promote the malignant phenotype of ESCC cells and induce radioresistance by regulating cell cycle distribution in ESCC.

5.
J Cancer ; 12(16): 5013-5024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234870

RESUMO

Purpose: Radiotherapy is a major modality for treatment of local advanced esophageal squamous cell carcinoma (ESCC). Hepatocyte nuclear factor 1-alpha (HNF1A) is involved in regulation of tumor cell proliferation, apoptosis, cycle distribution, invasion metastasis and chemical resistance. The aim of this study was to investigate the effect of HNF1A on radiosensitivity of ESCC cells. Methods: In our study, HNF1A expression was verified from GEPIA in multiple types of cancer. The prognostic value of HNF1A in ESCC was obtained by TCGA database. In addition, the expression of HNF1A in ESCC cell lines was verified by western blot. Subsequently, lentiviruses were used to construct HNF1A overexpressed cell lines TE1 and KYSE150.Then, the roles of HNF1A on cell proliferation, invasion, apoptosis, cell cycle distribution and radiosensitivity were verified. Furthermore, the relationship between HNF1A and γH2AX were determined by western blot and immunofluorescence. We also detected the expression changes of key factors in PI3K/AKT pathway after overexpression of HNF1A. Results: The results showed that the overexpression of HNF1A promoted cell proliferation and invasion with or without irradiation (IR), and potently radiation-resistance ESCC cells with a sensitization enhancement ratio (SER) of 0.76 and 0.87. In addition, HNF1A regulated Cyclin D1 and CDK4 proteins to promote the transition from radiation-induced G0/G1 phase arrest to S phase, and coordinated BAX and BCL2 proteins to reduce the occurrence of radiation-induced apoptosis. It was worth noting that HNF1A might be involved in radiation-induced DNA damage repair by regulating γH2AX though PI3K/AKT signal pathway. Conclusion: Our study preliminarily suggested that HNF1A was associated with the progression and radiosensitivity of ESCC cells, and it might reduce the radiosensitivity of ESCC cells by promoting cell proliferation, releasing G0/G1 phase arrest, reducing apoptosis, and regulating the expression of γH2AX protein though driving PI3K/AKT signal pathway.

6.
Onco Targets Ther ; 13: 4665-4678, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547096

RESUMO

PURPOSE: To explore the effects of FAM83D on the proliferation, invasion and radiosensitivity of human esophageal cancer cells and to elucidate the mechanism involved in the regulation of the growth and metastasis of esophageal cancer cells. METHODS AND MATERIALS: This study included sixty-nine patients with esophageal cancer. The expression levels of FAM83D in the esophageal cancer tissues and paracarcinoma tissues of the sixty-nine patients were measured. We also examined FAM83D expression in five cell lines. We analyzed the effects of FAM83D on the proliferation, invasion and radiosensitivity of human esophageal cancer cells via MTS, Transwell, and colony formation assays. The effect of FAM83D knockdown on cell apoptosis was assayed by flow cytometry. In addition, we also examined changes in the expression of metastasis-related molecules at the protein and mRNA levels by qRT-PCR and Western blotting after silencing FAM83D expression, and we detected the expression of PI3K/Akt signaling-related proteins by Western blotting. RESULTS: The results demonstrated that the expression of FAM83D was obviously higher in esophageal cancer tissues and cell lines than that in human adjacent normal tissues and normal esophageal epithelial cell lines. FAM83D overexpression was positively associated with tumor size, tumor-node-metastasis (TNM) stage, T classification, N classification, distant metastasis and relapse and was negatively associated with patient survival rates. FAM83D shRNA transfection suppressed its expression. Compared to that in the control group, the proliferation of tumor cells in the FAM83D shRNA group was hindered after exposure to radiation in vitro and in vivo; in addition, FAM83D knockdown inhibited cell invasion, induced apoptosis and regulated apoptosis-related protein expression. Moreover, the radiosensitivity of esophageal cancer cells was increased after depletion of FAM83D. In addition, FAM83D silencing was associated with the reversion of EMT, as reflected by an increase in the epithelial marker E-cadherin and a decrease in the mesenchymal markers N-cadherin and vimentin. Further study showed that FAM83D depletion suppressed the signaling pathway involving p-Akt, p-GSK-3ß and Snail. CONCLUSION: The results reveal that FAM83D may be a potential therapeutic target for esophageal squamous cell carcinoma (ESCC) and that lower expression of FAM83D in coordination with irradiation promotes the radiosensitization of ESCC by inducing EMT through the Akt/GSK-3ß/Snail signaling pathway.

7.
Oncol Rep ; 41(3): 1960-1970, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30569171

RESUMO

Radiotherapy (RT) is a traditional and important treatment for carcinoma of the esophagus along with surgery and chemotherapy. High mobility group box 1 (HMGB1) plays a crucial part in inhibiting the apoptosis of cancer cells after irradiation treatment. The present study, was designed to analyze the function of HMGB1 in esophageal cancer progression and elucidate the effects of HMGB1 on the radiosensitivity of human esophageal cancer cell lines. In the present study, an immunohistochemical evaluation of HMGB1 was performed on 77 biopsies, and the results revealed that HMGB1 overexpression was positively correlated with gross tumor volume (GTV), tumor­node­metastasis (TNM) stage, T classification, distant metastasis, and relapse and negatively correlated with patient survival rates, suggesting that HMGB1 acts as a key factor in the development of esophageal cancer. An shRNA targeting HMGB1 was designed for the knockdown of HMGB1 in ECA109 and TE13 cells, and the transfection efficiency of the shRNA was assessed using quantitative real­time reverse transcription polymerase chain reaction and western blot analysis. CCK­8 and clonogenic assays were used to analyze the effect of HMGB1 on the proliferation and radiosensitivity, respectively, of esophageal cancer cells in vitro. The influence of HMGB1 on radiation­induced changes in the migration, invasion, and cell cycle as well as apoptosis of tumor cells was examined by wound­healing and Transwell assays and flow cytometry, respectively. In addition, xenograft tumor models were constructed to observe the effect of HMGB1 on tumor growth in vivo. The results of the study in vitro revealed that the proliferation of the HMGB1­shRNA group decreased after irradiation, and the radiation treatment reduced the tumor volume of the xenograft model which was more marked in HMGB1­shRNA group. Moreover, HMGB1 was involved in the phosphorylation of H2AX after irradiation, and HMGB1 knockdown blocked the cell cycle in the G0/G1 phase and increased apoptosis. HMGB1 deficiency was also correlated with the upregulation of p16, Bax and caspase­9 and the downregulation of MMP­2, MMP­9, cyclin D1, CDK4, γH2AX and Bcl­2. These data indicated that the overexpression of HMGB1 prior to treatment was correlated with poor clinical outcome in esophageal carcinoma and that knockdown HMGB1 expression in human esophageal cancer cell lines increased their radiosensitivity by allowing the induction of apoptosis and G0/G1 arrest after exposure to radiation.


Assuntos
Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína HMGB1/metabolismo , Tolerância a Radiação/genética , Idoso , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/radioterapia , Esôfago/patologia , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteína HMGB1/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Taxa de Sobrevida , Regulação para Cima/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA