Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 130: 418-427, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152803

RESUMO

As a member of the tumor necrosis factor receptor-associated factor (TRAF) family, TRAF5 acts as a crucial adaptor molecule and plays important roles in the host innate immune responses. In the present study, the typical form and a splicing variant of TRAF5, termed Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were characterized in large yellow croaker (Larimichthys crocea). The putative Lc-TRAF5_tv1 protein is constituted of 577 aa, contains a RING finger domain, two zinc finger domains, a coiled-coil domain, and a MATH domain, whereas Lc-TRAF5_tv2 protein is constituted of 236 aa and only contains a RING finger domain due to a premature stop resulted from the intron retention. Subcellular localization analysis revealed that both of Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were localized in the cytoplasm, with Lc-TRAF5_tv2 found to aggregate around the nucleus. It was revealed that Lc-TRAF5_tv1 mRNA was broadly expressed in examined organs/tissues and showed extremely higher level than that of Lc-TRAF5_tv2, and both of them could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulations in vivo. Interestingly, overexpression of Lc-TRAF5_tv1 and Lc-TRAF5_tv2 could significantly induce NF-κB but not IFN1 activation, whereas co-expression of them remarkably induced IFN1 activation but impaired NF-κB activation. In addition, both Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were associated with TRAF3 and RIP1 in IFN1 activation, whereas only Lc-TRAF5_tv1 cooperated with TRAF3 and RIP1 in NF-κB activation. These results collectively indicated that the splicing variant together with the typical form of TRAF5 function importantly in the regulation of host immune signaling in teleosts.


Assuntos
NF-kappa B , Perciformes , Sequência de Aminoácidos , Animais , Lipopolissacarídeos/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Poli I , RNA Mensageiro , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 5 Associado a Receptor de TNF
2.
Front Immunol ; 13: 944528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898509

RESUMO

Tumor necrosis factor receptor-associated factors (TRAFs) are important adaptor molecules that play important roles in host immune regulation and inflammatory responses. Compared to other members of TRAFs, the function of TRAF4 in vertebrate immunity remains unclear, especially in teleosts. In the present study, TRAF4 ortholog was cloned and identified in large yellow croaker (Larimichthys crocea), named as Lc-TRAF4. The open reading frame (ORF) of Lc-TRAF4 is 1,413 bp and encodes a protein of 470 amino acids (aa), which is consisted of a RING finger domain, two zinc finger domains, and a MATH domain. The genome organization of Lc-TRAF4 is conserved in teleosts, amphibians, birds, and mammals, with 7 exons and 6 introns. Quantitative real-time PCR analysis revealed that Lc-TRAF4 was broadly distributed in various organs/tissues of healthy large yellow croakers and could be significantly up-regulated in the gill, intestine, spleen, head kidney, and blood under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulations. Notably, luciferase assays showed that overexpression of Lc-TRAF4 could significantly induce the activation of IRF3, IRF7, and type I IFN promoters, with the RING finger and zinc finger domains function importantly in such promoter activation. Confocal microscopy revealed that Lc-TRAF4 is located in the cytoplasm, whereas the deletion of the RING finger, zinc finger or MATH domain showed little effect on the subcellular localization of Lc-TRAF4. Interestingly, Lc-TRAF4 overexpression could significantly enhance Lc-TRIF and Lc-TRAF6 medicated IRF3 and IRF7 promoter activation. In addition, co-expression of Lc-TRAF4 with Lc-TRIF or Lc-TRAF6 could significantly induce the expression of antiviral and inflammation-related genes, including IRF3, IRF7, ISG15, ISG56, Mx, RSAD2, TNF-α, and IL-1ß compared to the only overexpression of Lc-TRAF4, Lc-TRIF or Lc-TRAF6. These results collectively imply that Lc-TRAF4 functions as an enhancer in Lc-TRIF and Lc-TRAF6 mediated antiviral and inflammatory signaling.


Assuntos
Perciformes , Fator 6 Associado a Receptor de TNF , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/metabolismo , Mamíferos/metabolismo , Fator 4 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
3.
Fish Shellfish Immunol ; 97: 114-124, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841694

RESUMO

As a member of tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family, TRAF3 is an important regulator of NF-κB and type I interferon (IFN) activation, especially in Toll-like receptors (TLRs)- and retinoic acid inducible gene I (RIG-I)-like receptors (RLRs)-mediated signaling pathway. In the present study, a TRAF3 homologue named Lc-TRAF3 was characterized in large yellow croaker (Larimichthys crocea). The open reading frame (ORF) of Lc-TRAF3 contains 1788 bp encoding a protein of 595 amino acids (aa). Sequence analysis indicated that Lc-TRAF3 is conserved in vertebrates, constituted with a N-terminal RING finger, two TRAF-type zinc fingers, and a C-terminal TRAF-MATH domain. The genome organization of Lc-TRAF3 is conserved in fish, with 13 exons and 12 introns, but different from that in birds or mammals, which contains 10 exons and 9 introns. Lc-TRAF3 was identified as cytosolic protein base on fluorescence microscopy analysis. Expression analysis revealed that Lc-TRAF3 was broadly distributed in examined organs/tissues, with the highest expression level in gill and weakest in brain, and could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulation in vivo. Interestingly, overexpression Lc-TRAF3 could induce the activation of NF-κB, and Lc-TRAF3 co-transfected with Lc-TRIF induced a significantly higher level of NF-κB and IRF3 promoter activity, implying that Lc-TRAF3 may function as an enhancer in Lc-TRIF-mediated signaling pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Fatores Reguladores de Interferon/genética , NF-kappa B/metabolismo , Perciformes/imunologia , Transdução de Sinais , Fator 3 Associado a Receptor de TNF/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Bactérias/imunologia , Fatores Reguladores de Interferon/imunologia , NF-kappa B/imunologia , Perciformes/genética , Perciformes/microbiologia , Fator 3 Associado a Receptor de TNF/imunologia
4.
Braz. j. med. biol. res ; 51(7): e6783, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951732

RESUMO

To avoid the abuse and misuse of antibiotics, procalcitonin (PCT) and C-reactive protein (CRP) have been used as new approaches to identify different types of infection. Multiple databases were adopted to search relevant studies, and the articles that satisfied the inclusion criteria were included. Meta-analyses were conducted with Review Manager 5.0, and to estimate the quality of each article, risk of bias was assessed. Eight articles satisfied the inclusion criteria. The concentrations of both PCT and CRP in patients with bacterial infection were higher than those with non-bacterial infection. Both PCT and CRP levels in patients with G− bacterial infection were higher than in those with G+ bacterial infection and fungus infection. In the G+ bacterial infection group, a higher concentration of CRP was observed compared with fungus infection group, while the difference of PCT between G+ bacterial infection and fungus infection was not significant. Our study suggested that both PCT and CRP are helpful to a certain extent in detecting pneumonia caused by different types of infection.


Assuntos
Humanos , Proteína C-Reativa/análise , Calcitonina/sangue , Pneumonia Bacteriana/microbiologia , Pneumopatias Fúngicas/microbiologia , Biomarcadores/sangue , Sensibilidade e Especificidade
5.
Methods Mol Biol ; 1656: 57-78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28808961

RESUMO

Zebrafish (Danio rerio) has become an increasingly important model for in vivo and in vitro studies on host-pathogen interaction, offering scientists with optical accessibility and genetic tractability, and a vertebrate-type immunity that can be separated into innate and adaptive ones. Although it is shown in previous studies that few species of viruses can naturally infect zebrafish, the spring viraemia of carp virus (SVCV), a rhabdovirus that causes contagious acute hemorrhagic viraemia in a variety of cyprinid fishes, can infect zebrafish by both injection and static immersion methods in laboratory conditions. In addition, SVCV can infect zebrafish fibroblast cell line (ZF4 cells), together with the Epithelioma papulosum cyprini (EPC) cell line (EPC cells), a common cell line used widely in fish disease research. The infection and propagation of SVCV in zebrafish and especially in these cell lines can be employed conveniently in laboratory for functional assays of zebrafish genes. The zebrafish, ZF4 and EPC cell, and SVCV can serve as a simple and efficient model system in understanding host-virus interactions. In the present chapter, we provide detailed protocols for the host-virus interaction analysis based on zebrafish embryos, ZF4/EPC cells, and SVCV, including infection methods of zebrafish embryos and cell lines, analyses of immune responses by quantitative PCR (qPCR) and RNA sequencing (RNA-Seq), antiviral assays based on ZF4 and EPC cells, and the analysis of host-virus interaction using luciferase assays. These protocols should provide efficient and typical means to address host-virus interactions in a more general biological sense.


Assuntos
Doenças dos Peixes , Interações Hospedeiro-Patógeno/imunologia , Infecções por Rhabdoviridae , Rhabdoviridae/fisiologia , Peixe-Zebra , Animais , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Peixe-Zebra/imunologia , Peixe-Zebra/virologia
6.
Fish Shellfish Immunol ; 50: 263-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26868214

RESUMO

Interleukin-6 (IL-6) is a multifunctional inflammatory cytokine which exists in multiple tissues and cell lines. In the present study, the full-length cDNA and the genomic sequence of IL-6 (LcIL-6) were cloned from large yellow croaker, Larimichthys crocea. The full-length cDNA of LcIL-6 was 1066 base pairs (bp), containing an open reading frame (ORF) of 678 bp encoding for 225 amino acids, a 5' untranslated region (UTR) of 71 bp and a 3' UTR of 317 bp. The predicted LcIL-6 protein included a 24 amino acids (aa) signal peptide and a conserved IL-6 domain. However, the polypeptide sequence identities between LcIL-6 and its counterparts in mammals and other fish are from 12% to 45%. The genome sequence of LcIL-6 gene was composed of 2126 bp, including five exons and four introns. Phylogenetic analysis revealed that LcIL-6 showed a close relationship with the IL-6 from other bony fish. Quantitative real-time PCR (qRT-PCR) analysis revealed that LcIL-6 mRNA was expressed in most examined tissues, with the most predominant expression in stomach, followed by blood and very weak expression in other tissues. The expression levels of LcIL-6 after challenged with LPS, poly I:C and Vibrio parahaemolyticus were investigated in spleen, head-kidney and liver. LcIL-6 transcripts were induced significantly after immune challenge, with the peak-value of 33.5 times as much as the control in the head-kidney at 3 h after LPS injection (p < 0.05). Overexpression of LcIL-6 enhanced tumor necrosis factor (TNF)-α transcripts significantly (p < 0.05) in L. crocea kidney (LCK) cells. Additionally, recombinant LcIL-6 mature peptide was obtained in the supernatant of Escherichia coli BL21 (DE3). The purified recombinant LcIL-6 fusion protein was also demonstrated to improve the transcriptional expression levels of TNF-α significantly in LCK cells (p < 0.05). However, no significant changes of Mx (myxovirus resistant protein), IL-1ß, janus kinase (JAK)2, signal transducers and activators of transcription (STAT)3 and STAT5 in LCK cells was detected after LcIL-6 overexpression or recombinant LcIL-6 protein stimulation. Our results indicated that LcIL-6 might be important in large yellow croaker immune response and improve the inflammatory response by through activation TNF-α expression.


Assuntos
Proteínas de Peixes/genética , Imunidade Inata , Interleucina-6/genética , Perciformes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Interleucina-6/química , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Especificidade de Órgãos , Perciformes/imunologia , Perciformes/metabolismo , Filogenia , Poli I-C/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência/veterinária , Vibrio parahaemolyticus/fisiologia
7.
Immunology ; 141(2): 192-202, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24116956

RESUMO

Melanoma differentiation-associated gene 5 (MDA5) is one of the three members in the retinoic acid-inducible gene I-like receptor (RLR) family, which are cytoplasmic pathogen recognition receptors recognizing intracellular viruses. In the present study, MDA5 and its spliced shorter forms, named as MDA5a and MDA5b, were identified in zebrafish. MDA5a and MDA5b can be up-regulated in cell lines following the infection of a negative ssRNA virus, the spring viraemia of carp virus (SVCV), and an intracellular Gram-negative bacterial pathogen Edwardsiella tarda, implying that the RLR may also be able to sense elements released from bacteria. The over-expression of MDA5a and MDA5b in fish cells resulted in significant induction of type I interferon promoter activity and enabled the protection of transfected cells against SVCV infection. Furthermore, the shorter spliced form, MDA5b when co-transfected with MDA5a or mitochondrial antiviral signalling protein (MAVS), induced a significantly higher level of interferon promoter activity, indicating that MDA5b may function as an enhancer in the interaction between MDA5 and MAVS.


Assuntos
RNA Helicases DEAD-box/fisiologia , Interferon Tipo I/genética , Regiões Promotoras Genéticas , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon , Dados de Sequência Molecular , Transdução de Sinais , Viroses/prevenção & controle , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA