Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38710482

RESUMO

MOTIVATION: Despite the extensive manufacturing of antiviral drugs and vaccination, viral infections continue to be a major human ailment. Antiviral peptides (AVPs) have emerged as potential candidates in the pursuit of novel antiviral drugs. These peptides show vigorous antiviral activity against a diverse range of viruses by targeting different phases of the viral life cycle. Therefore, the accurate prediction of AVPs is an essential yet challenging task. Lately, many machine learning-based approaches have developed for this purpose; however, their limited capabilities in terms of feature engineering, accuracy, and generalization make these methods restricted. RESULTS: In the present study, we aim to develop an efficient machine learning-based approach for the identification of AVPs, referred to as DeepAVP-TPPred, to address the aforementioned problems. First, we extract two new transformed feature sets using our designed image-based feature extraction algorithms and integrate them with an evolutionary information-based feature. Next, these feature sets were optimized using a novel feature selection approach called binary tree growth Algorithm. Finally, the optimal feature space from the training dataset was fed to the deep neural network to build the final classification model. The proposed model DeepAVP-TPPred was tested using stringent 5-fold cross-validation and two independent dataset testing methods, which achieved the maximum performance and showed enhanced efficiency over existing predictors in terms of both accuracy and generalization capabilities. AVAILABILITY AND IMPLEMENTATION: https://github.com/MateeullahKhan/DeepAVP-TPPred.


Assuntos
Algoritmos , Antivirais , Aprendizado de Máquina , Antivirais/farmacologia , Antivirais/química , Peptídeos/química , Humanos , Biologia Computacional/métodos , Redes Neurais de Computação
2.
Artif Intell Med ; 151: 102860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552379

RESUMO

Globally, fungal infections have become a major health concern in humans. Fungal diseases generally occur due to the invading fungus appearing on a specific portion of the body and becoming hard for the human immune system to resist. The recent emergence of COVID-19 has intensely increased different nosocomial fungal infections. The existing wet-laboratory-based medications are expensive, time-consuming, and may have adverse side effects on normal cells. In the last decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, we developed a highly discriminative prediction scheme called iAFPs-Mv-BiTCN to predict antifungal peptides correctly. The training peptides are encoded using word embedding methods such as skip-gram and attention mechanism-based bidirectional encoder representation using transformer. Additionally, transform-based evolutionary features are generated using the Pseduo position-specific scoring matrix using discrete wavelet transform (PsePSSM-DWT). The fused vector of word embedding and evolutionary descriptors is formed to compensate for the limitations of single encoding methods. A Shapley Additive exPlanations (SHAP) based global interpolation approach is applied to reduce training costs by choosing the optimal feature set. The selected feature set is trained using a bi-directional temporal convolutional network (BiTCN). The proposed iAFPs-Mv-BiTCN model achieved a predictive accuracy of 98.15 % and an AUC of 0.99 using training samples. In the case of the independent samples, our model obtained an accuracy of 94.11 % and an AUC of 0.98. Our iAFPs-Mv-BiTCN model outperformed existing models with a ~4 % and ~5 % higher accuracy using training and independent samples, respectively. The reliability and efficacy of the proposed iAFPs-Mv-BiTCN model make it a valuable tool for scientists and may perform a beneficial role in pharmaceutical design and research academia.


Assuntos
Antifúngicos , Redes Neurais de Computação , Antifúngicos/uso terapêutico , Humanos , Peptídeos/química , COVID-19 , Micoses/microbiologia , Análise de Ondaletas , Algoritmos
3.
BMC Bioinformatics ; 25(1): 102, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454333

RESUMO

BACKGROUND: Viral infections have been the main health issue in the last decade. Antiviral peptides (AVPs) are a subclass of antimicrobial peptides (AMPs) with substantial potential to protect the human body against various viral diseases. However, there has been significant production of antiviral vaccines and medications. Recently, the development of AVPs as an antiviral agent suggests an effective way to treat virus-affected cells. Recently, the involvement of intelligent machine learning techniques for developing peptide-based therapeutic agents is becoming an increasing interest due to its significant outcomes. The existing wet-laboratory-based drugs are expensive, time-consuming, and cannot effectively perform in screening and predicting the targeted motif of antiviral peptides. METHODS: In this paper, we proposed a novel computational model called Deepstacked-AVPs to discriminate AVPs accurately. The training sequences are numerically encoded using a novel Tri-segmentation-based position-specific scoring matrix (PSSM-TS) and word2vec-based semantic features. Composition/Transition/Distribution-Transition (CTDT) is also employed to represent the physiochemical properties based on structural features. Apart from these, the fused vector is formed using PSSM-TS features, semantic information, and CTDT descriptors to compensate for the limitations of single encoding methods. Information gain (IG) is applied to choose the optimal feature set. The selected features are trained using a stacked-ensemble classifier. RESULTS: The proposed Deepstacked-AVPs model achieved a predictive accuracy of 96.60%%, an area under the curve (AUC) of 0.98, and a precision-recall (PR) value of 0.97 using training samples. In the case of the independent samples, our model obtained an accuracy of 95.15%, an AUC of 0.97, and a PR value of 0.97. CONCLUSION: Our Deepstacked-AVPs model outperformed existing models with a ~ 4% and ~ 2% higher accuracy using training and independent samples, respectively. The reliability and efficacy of the proposed Deepstacked-AVPs model make it a valuable tool for scientists and may perform a beneficial role in pharmaceutical design and research academia.


Assuntos
Evolução Biológica , Peptídeos , Humanos , Reprodutibilidade dos Testes , Peptídeos/química , Antivirais/farmacologia
4.
Int J Biol Macromol ; 264(Pt 2): 130660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460634

RESUMO

The emergence of SARS-CoV-2 presents a significant global public health dilemma. Vaccination has long been recognized as the most effective means of preventing the spread of infectious diseases. DNA vaccines have attracted attention due to their safety profile, cost-effectiveness, and ease of production. This study aims to assess the efficacy of plasmid-encoding GM-CSF (pGM-CSF) as an adjuvant to augment the specific humoral and cellular immune response elicited by DNA vaccines based on the receptor-binding domain (RBD) antigen. Compared to the use of plasmid-encoded RBD (pRBD) alone, mice that were immunized with a combination of pRBD and pGM-CSF exhibited significantly elevated levels of RBD-specific antibody titers in serum, BALF, and nasal wash. Furthermore, these mice generated more potent neutralization antibodies against both the wild-type and Omicron pseudovirus, as well as the ancestral virus. In addition, pGM-CSF enhanced pRBD-induced CD4+ and CD8+ T cell responses and promoted central memory T cells storage in the spleen. At the same time, tissue-resident memory T (Trm) cells in the lung also increased significantly, and higher levels of specific responses were maintained 60 days post the final immunization. pGM-CSF may play an adjuvant role by promoting antigen expression, immune cells recruitment and GC B cell responses. In conclusion, pGM-CSF may be an effective adjuvant candidate for the DNA vaccines against SARS-CoV-2.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Vacinação , DNA , Anticorpos Antivirais , Anticorpos Neutralizantes
5.
Pharmacol Res ; 202: 107122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428703

RESUMO

The ectonucleotidase CD39 has been regarded as a promising immune checkpoint in solid tumors. However, the expression of CD39 by tumor-infiltrating CD8+ T cells as well as their potential roles and clinical implications in human gastric cancer (GC) remain largely unknown. Here, we found that GC-infiltrating CD8+ T cells contained a fraction of CD39hi cells that constituted about 6.6% of total CD8+ T cells in tumors. These CD39hi cells enriched for GC-infiltrating CD8+ T cells with features of exhaustion in transcriptional, phenotypic, metabolic and functional profiles. Additionally, GC-infiltrating CD39hiCD8+ T cells were also identified for tumor-reactive T cells, as these cells expanded in vitro were able to recognize autologous tumor organoids and induced more tumor cell apoptosis than those of expanded their CD39int and CD39-CD8+ counterparts. Furthermore, CD39 enzymatic activity controlled GC-infiltrating CD39hiCD8+ T cell effector function, and blockade of CD39 efficiently enhanced their production of cytokines IFN-γ and TNF-α. Finally, high percentages of GC-infiltrating CD39hiCD8+ T cells correlated with tumor progression and independently predicted patients' poor overall survival. These findings provide novel insights into the association of CD39 expression level on CD8+ T cells with their features and potential clinical implications in GC, and empowering those exhausted tumor-reactive CD39hiCD8+ T cells through CD39 inhibition to circumvent the suppressor program may be an attractive therapeutic strategy against GC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Clin Transl Immunology ; 13(3): e1499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501063

RESUMO

Objectives: CD4+ T cell helper and regulatory function in human cancers has been well characterised. However, the definition of tumor-infiltrating CD4+ T cell exhaustion and how it contributes to the immune response and disease progression in human gastric cancer (GC) remain largely unknown. Methods: A total of 128 GC patients were enrolled in the study. The expression of CD39 and PD-1 on CD4+ T cells in the different samples was analysed by flow cytometry. GC-infiltrating CD4+ T cell subpopulations based on CD39 expression were phenotypically and functionally assessed. The role of CD39 in the immune response of GC-infiltrating T cells was investigated by inhibiting CD39 enzymatic activity. Results: In comparison with CD4+ T cells from the non-tumor tissues, significantly more GC-infiltrating CD4+ T cells expressed CD39. Most GC-infiltrating CD39+CD4+ T cells exhibited CD45RA-CCR7- effector-memory phenotype expressing more exhaustion-associated inhibitory molecules and transcription factors and produced less TNF-α, IFN-γ and cytolytic molecules than their CD39-CD4+ counterparts. Moreover, ex vivo inhibition of CD39 enzymatic activity enhanced their functional potential reflected by TNF-α and IFN-γ production. Finally, increased percentages of GC-infiltrating CD39+CD4+ T cells were positively associated with disease progression and patients' poorer overall survival. Conclusion: Our study demonstrates that CD39 expression defines GC-infiltrating CD4+ T cell exhaustion and their immunosuppressive function. Targeting CD39 may be a promising therapeutic strategy for treating GC patients.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38386576

RESUMO

Improving the drug development process can expedite the introduction of more novel drugs that cater to the demands of precision medicine. Accurately predicting molecular properties remains a fundamental challenge in drug discovery and development. Currently, a plethora of computer-aided drug discovery (CADD) methods have been widely employed in the field of molecular prediction. However, most of these methods primarily analyze molecules using low-dimensional representations such as SMILES notations, molecular fingerprints, and molecular graph-based descriptors. Only a few approaches have focused on incorporating and utilizing high-dimensional spatial structural representations of molecules. In light of the advancements in artificial intelligence, we introduce a 3D graph-spatial co-representation model called AEGNN-M, which combines two graph neural networks, GAT and EGNN. AEGNN-M enables learning of information from both molecular graphs representations and 3D spatial structural representations to predict molecular properties accurately. We conducted experiments on seven public datasets, three regression datasets and 14 breast cancer cell line phenotype screening datasets, comparing the performance of AEGNN-M with state-of-the-art deep learning methods. Extensive experimental results demonstrate the satisfactory performance of the AEGNN-M model. Furthermore, we analyzed the performance impact of different modules within AEGNN-M and the influence of spatial structural representations on the model's performance. The interpretability analysis also revealed the significance of specific atoms in determining particular molecular properties.

8.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38366802

RESUMO

Anti-coronavirus peptides (ACVPs) represent a relatively novel approach of inhibiting the adsorption and fusion of the virus with human cells. Several peptide-based inhibitors showed promise as potential therapeutic drug candidates. However, identifying such peptides in laboratory experiments is both costly and time consuming. Therefore, there is growing interest in using computational methods to predict ACVPs. Here, we describe a model for the prediction of ACVPs that is based on the combination of feature engineering (FE) optimization and deep representation learning. FEOpti-ACVP was pre-trained using two feature extraction frameworks. At the next step, several machine learning approaches were tested in to construct the final algorithm. The final version of FEOpti-ACVP outperformed existing methods used for ACVPs prediction and it has the potential to become a valuable tool in ACVP drug design. A user-friendly webserver of FEOpti-ACVP can be accessed at http://servers.aibiochem.net/soft/FEOpti-ACVP/.


Assuntos
Algoritmos , Peptídeos , Humanos , Sequência de Aminoácidos , Peptídeos/farmacologia , Aprendizado de Máquina
9.
BMC Biol ; 22(1): 44, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408987

RESUMO

BACKGROUND: Circular RNAs (circRNAs) can regulate microRNA activity and are related to various diseases, such as cancer. Functional research on circRNAs is the focus of scientific research. Accurate identification of circRNAs is important for gaining insight into their functions. Although several circRNA prediction models have been developed, their prediction accuracy is still unsatisfactory. Therefore, providing a more accurate computational framework to predict circRNAs and analyse their looping characteristics is crucial for systematic annotation. RESULTS: We developed a novel framework, CircDC, for classifying circRNAs from other lncRNAs. CircDC uses four different feature encoding schemes and adopts a multilayer convolutional neural network and bidirectional long short-term memory network to learn high-order feature representation and make circRNA predictions. The results demonstrate that the proposed CircDC model is more accurate than existing models. In addition, an interpretable analysis of the features affecting the model is performed, and the computational framework is applied to the extended application of circRNA identification. CONCLUSIONS: CircDC is suitable for the prediction of circRNA. The identification of circRNA helps to understand and delve into the related biological processes and functions. Feature importance analysis increases model interpretability and uncovers significant biological properties. The relevant code and data in this article can be accessed for free at https://github.com/nmt315320/CircDC.git .


Assuntos
MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , Redes Neurais de Computação , Neoplasias/genética , Biologia Computacional/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38215334

RESUMO

Clustering is a common technique for statistical data analysis and is essential for developing precision medicine. Numerous computational methods have been proposed for integrating multi-omics data to identify cancer subtypes. However, most existing clustering models based on network fusion fail to preserve the consistency of the distribution of the data before and after fusion. Motivated by this observation, we would like to measure and minimize the distribution difference between networks, which may not be in the same space, to improve the performance of data fusion. We were therefore motivated to develop a flexible clustering model, based on network fusion, that minimizes the distribution difference between the data before and after fusion by co-regularization; the model can be applied to both single- and multi-omics data. We propose a new network fusion model for single- and multi-omics data clustering for identifying cancer or cell subtypes based on co-regularized network fusion (SMCC). SMCC integrates low-rank subspace representation and entropy to fuse networks. In addition, it measures and minimizes the distribution difference between the similarity networks and the fusion network by co-regularization. The model can both reduce the noise interference in the source data and make the statistical characteristics of the fusion result closer to those of the source data. We evaluated the clustering performance of SMCC across 16 real single- and multi-omics dataset. The experimental results demonstrated that SMCC is superior to 17 state-of-the-art clustering methods. Moreover, it is effective for identifying cancer or cell subtypes, thereby promoting the development of precision medicine.

11.
BMC Biol ; 22(1): 24, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281919

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been confirmed to play a vital role in the occurrence and development of diseases. Exploring the relationship between circRNAs and diseases is of far-reaching significance for studying etiopathogenesis and treating diseases. To this end, based on the graph Markov neural network algorithm (GMNN) constructed in our previous work GMNN2CD, we further considered the multisource biological data that affects the association between circRNA and disease and developed an updated web server CircDA and based on the human hepatocellular carcinoma (HCC) tissue data to verify the prediction results of CircDA. RESULTS: CircDA is built on a Tumarkov-based deep learning framework. The algorithm regards biomolecules as nodes and the interactions between molecules as edges, reasonably abstracts multiomics data, and models them as a heterogeneous biomolecular association network, which can reflect the complex relationship between different biomolecules. Case studies using literature data from HCC, cervical, and gastric cancers demonstrate that the CircDA predictor can identify missing associations between known circRNAs and diseases, and using the quantitative real-time PCR (RT-qPCR) experiment of HCC in human tissue samples, it was found that five circRNAs were significantly differentially expressed, which proved that CircDA can predict diseases related to new circRNAs. CONCLUSIONS: This efficient computational prediction and case analysis with sufficient feedback allows us to identify circRNA-associated diseases and disease-associated circRNAs. Our work provides a method to predict circRNA-associated diseases and can provide guidance for the association of diseases with certain circRNAs. For ease of use, an online prediction server ( http://server.malab.cn/CircDA ) is provided, and the code is open-sourced ( https://github.com/nmt315320/CircDA.git ) for the convenience of algorithm improvement.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , RNA Circular/genética , RNA Circular/análise , Carcinoma Hepatocelular/genética , Seguimentos , Neoplasias Hepáticas/genética , Redes Neurais de Computação , Simulação por Computador , Biologia Computacional/métodos
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279648

RESUMO

Virus-encoded circular RNA (circRNA) participates in the immune response to viral infection, affects the human immune system, and can be used as a target for precision therapy and tumor biomarker. The coronaviruses SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) that have emerged in recent years are highly contagious and have high mortality rates. In coronaviruses, little is known about the circRNA encoded by the SARS-CoV-1/2. Therefore, this study explores whether SARS-CoV-1/2 encodes circRNA and characteristics and functions of circRNA. Based on RNA-seq data of SARS-CoV-1 and SARS-CoV-2 infections, we used circRNA identification tools (circRNA_finder, find_circ and CIRI2) to identify circRNAs. The number of circRNAs encoded by SARS-CoV-1 and SARS-CoV-2 was identified as 151 and 470, respectively. It can be found that SARS-CoV-2 shows more prominent circRNA encoding ability than SARS-CoV-1. Expression analysis showed that only a few circRNAs encoded by SARS-CoV-1/2 showed high expression levels, and the positive strand produced more abundant circRNAs. Then, based on the identified SARS-CoV-1/2-encoded circRNAs, we performed circRNA identification and characterization using the previously developed CirRNAPL. Finally, target gene prediction and functional enrichment analysis were performed. It was found that viral circRNA is closely related to cancer and has a potential role in regulating host cell functions. This study studied the characteristics and functions of viral circRNA encoded by coronavirus SARS-CoV-1/2, providing a valuable resource for further research on the function and molecular mechanism of coronavirus circRNA.


Assuntos
COVID-19 , MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , SARS-CoV-2/genética , COVID-19/genética , RNA Viral/genética , Neoplasias/genética , MicroRNAs/genética
13.
PLoS Comput Biol ; 20(1): e1011851, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289973

RESUMO

The unique expression patterns of circRNAs linked to the advancement and prognosis of cancer underscore their considerable potential as valuable biomarkers. Repurposing existing drugs for new indications can significantly reduce the cost of cancer treatment. Computational prediction of circRNA-cancer and drug-cancer relationships is crucial for precise cancer therapy. However, prior computational methods fail to analyze the interaction between circRNAs, drugs, and cancer at the systematic level. It is essential to propose a method that uncover more valuable information for achieving cancer-centered multi-association prediction. In this paper, we present a novel computational method, AutoEdge-CCP, to unveil cancer-associated circRNAs and drugs. We abstract the complex relationships between circRNAs, drugs, and cancer into a multi-source heterogeneous network. In this network, each molecule is represented by two types information, one is the intrinsic attribute information of molecular features, and the other is the link information explicitly modeled by autoGNN, which searches information from both intra-layer and inter-layer of message passing neural network. The significant performance on multi-scenario applications and case studies establishes AutoEdge-CCP as a potent and promising association prediction tool.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Redes Neurais de Computação , Biomarcadores
14.
J Chem Inf Model ; 64(7): 2393-2404, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37799091

RESUMO

Antimicrobial peptides (AMPs) are small molecular polypeptides that can be widely used in the prevention and treatment of microbial infections. Although many computational models have been proposed to help identify AMPs, a high-performance and interpretable model is still lacking. In this study, new benchmark data sets are collected and processed, and a stacking deep architecture named AMPpred-MFA is carefully designed to discover and identify AMPs. Multiple features and a multihead attention mechanism are utilized on the basis of a bidirectional long short-term memory (LSTM) network and a convolutional neural network (CNN). The effectiveness of AMPpred-MFA is verified through five independent tests conducted in batches. Experimental results show that AMPpred-MFA achieves a state-of-the-art performance. The visualization interpretability analyses and ablation experiments offer a further understanding of the model behavior and performance, validating the importance of our feature representation and stacking architecture, especially the multihead attention mechanism. Therefore, AMPpred-MFA can be considered a reliable and efficient approach to understanding and predicting AMPs.


Assuntos
Peptídeos Antimicrobianos , Benchmarking , Redes Neurais de Computação
15.
J Dermatol ; 51(1): 115-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37830382

RESUMO

Linear morphea, also known as linear scleroderma, is a localized form of scleroderma characterized by the presence of lesions that follow a linear distribution pattern. Apart from the typical inflammation and fibrosis of the skin, the linear subtype of morphea often affects underlying structures such as muscles and bones, which can lead to functional limitations. Lichen striatus, a linear inflammatory skin condition, primarily affects children aged 5 to 15 years. Interestingly, both diseases can exhibit lesions that follow the lines of Blaschko. Here we report a case with linear morphea following the lines of Blaschko mimicking lichen striatus in a 4-year-old child. This unique case represents the first documented instance of linear morphea exhibiting a precise Blaschko pattern and being successfully treated with baricitinib. The patient received oral baricitinib at a daily dosage of 2 mg for a duration of 1 year, resulting in remarkable improvement. The majority of the lesions softened, and there was no significant disease progression or occurrence of adverse events throughout the treatment period. Recognizing linear morphea at an early stage is of utmost importance in ensuring effective treatment and preventing disfiguring sequelae. Patients suspected of lichen striatus should also be closely followed and linear morphea should be excluded during the follow-up. The recent breakthrough in the application and the safety of baricitinib in scleroderma is also reviewed.


Assuntos
Eczema , Exantema , Ceratose , Esclerodermia Localizada , Dermatopatias , Humanos , Pré-Escolar , Esclerodermia Localizada/diagnóstico , Esclerodermia Localizada/tratamento farmacológico , Esclerodermia Localizada/patologia , Dermatopatias/patologia , Pele/patologia , Eczema/patologia
16.
Heliyon ; 9(11): e21329, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954355

RESUMO

T cell proliferation regulators (Tcprs), which are positive regulators that promote T cell function, have made great contributions to the development of therapies to improve T cell function. CAR (chimeric antigen receptor) -T cell therapy, a type of adoptive cell transfer therapy that targets tumor cells and enhances immune lethality, has led to significant progress in the treatment of hematologic tumors. However, the applications of CAR-T in solid tumor treatment remain limited. Therefore, in this review, we focus on the development of Tcprs for solid tumor therapy and prognostic prediction. We summarize potential strategies for targeting different Tcprs to enhance T cell proliferation and activation and inhibition of cancer progression, thereby improving the antitumor activity and persistence of CAR-T. In summary, we propose means of enhancing CAR-T cells by expressing different Tcprs, which may lead to the development of a new generation of cell therapies.

17.
ACS Appl Bio Mater ; 6(11): 4906-4913, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37917917

RESUMO

Contrast-enhanced magnetic resonance angiography is a powerful and effective method to accurately diagnose carotid artery stenosis. Small molecular gadolinium (Gd)-based agents have reliable signal enhancement, but their short circulating time may result in a loss of image resolution due to insufficient vascular filling or contrast agent emptying. Here, we report an MRA imaging approach to diagnose carotid artery stenosis using long-circulating bovine serum albumin (BSA)-Gd2O3 nanoparticles (NPs). The BSA-Gd2O3 NPs synthesized by a simple biomineralization approach exhibit admirable monodispersity, uniform size, favorable aqueous solubility, good biocompatibility, and high relaxivity (14.86 mM-1 s-1 in water, 6.41 mM-1 s-1 in plasma). In vivo MRA imaging shows that outstanding vascular enhancement of BSA-Gd2O3 NPs (0.05 mmol Gd/kg, half the dose in the clinic) can be maintained for at least 2 h, much longer than Gd-DTPA. Vessels as small as 0.3 mm can be clearly observed in MRA images with high resolution. In a rat carotid artery stenosis model, the BSA-Gd2O3 NPs-based MRA enables the precise diagnosis of the severity and location and the therapeutic effect following the surgery of carotid artery stenosis, which provides a method for the theranostics of vascular diseases.


Assuntos
Estenose das Carótidas , Nanopartículas , Ratos , Animais , Angiografia por Ressonância Magnética/métodos , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Meios de Contraste , Gadolínio , Soroalbumina Bovina
18.
Methods ; 219: 73-81, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783242

RESUMO

Adverse drug reactions include side effects, allergic reactions, and secondary infections. Severe adverse reactions can cause cancer, deformity, or mutation. The monitoring of drug side effects is an important support for post marketing safety supervision of drugs, and an important basis for revising drug instructions. Its purpose is to timely detect and control drug safety risks. Traditional methods are time-consuming. To accelerate the discovery of side effects, we propose a machine learning based method, called correntropy-loss based matrix factorization with neural tangent kernel (CLMF-NTK), to solve the prediction of drug side effects. Our method and other computational methods are tested on three benchmark datasets, and the results show that our method achieves the best predictive performance.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Aprendizado de Máquina , Neoplasias/genética , Benchmarking , Algoritmos
19.
J Chem Inf Model ; 63(21): 6537-6554, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37905969

RESUMO

Inflammation is a biologically resistant response to harmful stimuli, such as infection, damaged cells, toxic chemicals, or tissue injuries. Its purpose is to eradicate pathogenic micro-organisms or irritants and facilitate tissue repair. Prolonged inflammation can result in chronic inflammatory diseases. However, wet-laboratory-based treatments are costly and time-consuming and may have adverse side effects on normal cells. In the past decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, we developed a highly discriminative prediction model called AIPs-SnTCN to predict anti-inflammatory peptides accurately. The peptide samples are encoded using word embedding techniques such as skip-gram and attention-based bidirectional encoder representation using a transformer (BERT). The conjoint triad feature (CTF) also collects structure-based cluster profile features. The fused vector of word embedding and sequential features is formed to compensate for the limitations of single encoding methods. Support vector machine-based recursive feature elimination (SVM-RFE) is applied to choose the ranking-based optimal space. The optimized feature space is trained by using an improved self-normalized temporal convolutional network (SnTCN). The AIPs-SnTCN model achieved a predictive accuracy of 95.86% and an AUC of 0.97 by using training samples. In the case of the alternate training data set, our model obtained an accuracy of 92.04% and an AUC of 0.96. The proposed AIPs-SnTCN model outperformed existing models with an ∼19% higher accuracy and an ∼14% higher AUC value. The reliability and efficacy of our AIPs-SnTCN model make it a valuable tool for scientists and may play a beneficial role in pharmaceutical design and research academia.


Assuntos
Anti-Inflamatórios , Peptídeos , Humanos , Reprodutibilidade dos Testes , Peptídeos/farmacologia , Peptídeos/química , Inflamação/tratamento farmacológico , Máquina de Vetores de Suporte
20.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37861173

RESUMO

NcRNA-encoded small peptides (ncPEPs) have recently emerged as promising targets and biomarkers for cancer immunotherapy. Therefore, identifying cancer-associated ncPEPs is crucial for cancer research. In this work, we propose CoraL, a novel supervised contrastive meta-learning framework for predicting cancer-associated ncPEPs. Specifically, the proposed meta-learning strategy enables our model to learn meta-knowledge from different types of peptides and train a promising predictive model even with few labeled samples. The results show that our model is capable of making high-confidence predictions on unseen cancer biomarkers with only five samples, potentially accelerating the discovery of novel cancer biomarkers for immunotherapy. Moreover, our approach remarkably outperforms existing deep learning models on 15 cancer-associated ncPEPs datasets, demonstrating its effectiveness and robustness. Interestingly, our model exhibits outstanding performance when extended for the identification of short open reading frames derived from ncPEPs, demonstrating the strong prediction ability of CoraL at the transcriptome level. Importantly, our feature interpretation analysis discovers unique sequential patterns as the fingerprint for each cancer-associated ncPEPs, revealing the relationship among certain cancer biomarkers that are validated by relevant literature and motif comparison. Overall, we expect CoraL to be a useful tool to decipher the pathogenesis of cancer and provide valuable information for cancer research. The dataset and source code of our proposed method can be found at https://github.com/Johnsunnn/CoraL.


Assuntos
Antozoários , Neoplasias , Animais , Antozoários/genética , Neoplasias/genética , Biomarcadores Tumorais/genética , Imunoterapia , Peptídeos/genética , RNA não Traduzido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA