Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 185(10): 3005-3011, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34145744

RESUMO

WNT9B plays a key role in the development of the mammalian urogenital system. It is essential for the induction of mesonephric and metanephric tubules, the regulation of renal tubule morphogenesis, and the regulation of renal progenitor cell expansion and differentiation. To our knowledge, WNT9B has not been associated with renal defects in humans; however, WNT9B-/- mice have renal agenesis/hypoplasia and reproductive tract abnormalities. We report four individuals from two unrelated consanguineous families with bilateral renal agenesis/hypoplasia/dysplasia and homozygous variants in WNT9B. The proband from Family 1 has bilateral renal cystic dysplasia and chronic kidney disease. He has two deceased siblings who presented with bilateral renal hypoplasia/agenesis. The three affected family members were homozygous for a missense variant in WNT9B (NM_003396.2: c.949G>A/p.(Gly317Arg)). The proband from Family 2 has renal hypoplasia/dysplasia, chronic kidney disease, and is homozygous for a nonsense variant in WNT9B (NM_003396.2: c.11dupC/p.(Pro5Alafs*52)). Two of her siblings died in the neonatal period, one confirmed to be in the context of oligohydramnios. The proband's unaffected brother is also homozygous for the nonsense variant in WNT9B, suggesting nonpenetrance. We propose a novel association of WNT9B and renal anomalies in humans. Further study is needed to delineate the contribution of WNT9B to genitourinary anomalies in humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Anormalidades Urogenitais/genética , Proteínas Wnt/genética , Animais , Criança , Anormalidades Congênitas/patologia , Feminino , Homozigoto , Humanos , Lactente , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais/crescimento & desenvolvimento , Túbulos Renais/patologia , Masculino , Camundongos , Gravidez , Sistema Urinário/crescimento & desenvolvimento , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/patologia
2.
Hum Mutat ; 37(2): 148-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26507355

RESUMO

Mandibulofacial dysostosis with microcephaly (MFDM) is a multiple malformation syndrome comprising microcephaly, craniofacial anomalies, hearing loss, dysmorphic features, and, in some cases, esophageal atresia. Haploinsufficiency of a spliceosomal GTPase, U5-116 kDa/EFTUD2, is responsible. Here, we review the molecular basis of MFDM in the 69 individuals described to date, and report mutations in 38 new individuals, bringing the total number of reported individuals to 107 individuals from 94 kindreds. Pathogenic EFTUD2 variants comprise 76 distinct mutations and seven microdeletions. Among point mutations, missense substitutions are infrequent (14 out of 76; 18%) relative to stop-gain (29 out of 76; 38%), and splicing (33 out of 76; 43%) mutations. Where known, mutation origin was de novo in 48 out of 64 individuals (75%), dominantly inherited in 12 out of 64 (19%), and due to proven germline mosaicism in four out of 64 (6%). Highly penetrant clinical features include, microcephaly, first and second arch craniofacial malformations, and hearing loss; esophageal atresia is present in an estimated ∼27%. Microcephaly is virtually universal in childhood, with some adults exhibiting late "catch-up" growth and normocephaly at maturity. Occasionally reported anomalies, include vestibular and ossicular malformations, reduced mouth opening, atrophy of cerebral white matter, structural brain malformations, and epibulbar dermoid. All reported EFTUD2 mutations can be found in the EFTUD2 mutation database (http://databases.lovd.nl/shared/genes/EFTUD2).


Assuntos
Anormalidades Múltiplas/genética , Perda Auditiva/genética , Deficiência Intelectual/genética , Disostose Mandibulofacial/genética , Microcefalia/genética , Mutação , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Motivos de Aminoácidos , Bases de Dados Genéticas , Expressão Gênica , Haploinsuficiência , Perda Auditiva/diagnóstico , Perda Auditiva/patologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Disostose Mandibulofacial/diagnóstico , Disostose Mandibulofacial/patologia , Microcefalia/diagnóstico , Microcefalia/patologia , Modelos Moleculares , Dados de Sequência Molecular , Penetrância , Fenótipo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Splicing de RNA , Spliceossomos/genética
3.
Am J Hum Genet ; 90(2): 308-13, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22265015

RESUMO

Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic FHS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.


Assuntos
Anormalidades Múltiplas/genética , Adenosina Trifosfatases/genética , Proteína de Ligação a CREB/genética , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Comunicação Interventricular/genética , Mutação , Motivos de Aminoácidos , Criança , Pré-Escolar , Cromatina/genética , Exoma , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Fenótipo , Ligação Proteica , Síndrome de Rubinstein-Taybi/genética
4.
Mov Disord ; 21(7): 906-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16532445

RESUMO

Multiple genes have been now identified as causing Parkinson's disease (PD). In 2003, two mutations were identified in exon 1 of the Nurr1 gene in 10 of 107 individuals with familial PD. To date, investigators have only focused on screening for these known mutations of the Nurr1 gene. All individuals were recruited from two Parkinson's disease clinics in Canada. Following PCR amplification of each exon of the Nurr1 gene, samples underwent denaturing high-performance liquid chromatography (DHPLC) analysis. Ten individuals also underwent direct sequencing as well as any samples where variants were identified. The Nurr1 gene was evaluated for 202 PD individuals, 37% of whom had at least one relative with PD and 100 control non-PD individuals. Using DHPLC and direct sequencing, we did not detect any sequence variants in exon 1. Variants in amplicon 6 were seen and direct sequencing confirmed a known NI6P polymorphism in intron 6. Novel polymorphisms were also identified in exon 3 and intron 5. A novel mutation was identified in exon 3 in one nonfamilial PD individual. This heterozygous C-to-G transversion resulted in a serine-to-cysteine substitution and was not identified in any of the other 602 chromosomes screened. Mutations in the Nurr1 gene in our large cohort of familial and sporadic PD individuals are rare. The novel mutation in exon 3 is predicted to affect phosphorylation and functional studies to assess this are underway. This is the first coding mutation identified in the Nurr1 gene for Parkinson's disease.


Assuntos
Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Éxons , Doença de Parkinson/genética , Biossíntese de Proteínas/genética , Fatores de Transcrição/genética , Idoso , Substituição de Aminoácidos/genética , Cromatografia Líquida de Alta Pressão , Cisteína/genética , Feminino , Triagem de Portadores Genéticos , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Polimorfismo Genético/genética , Análise de Sequência , Serina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA