Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(7): 5109-5125, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37071265

RESUMO

Cadmium pollution in farmland has become a global environmental problem, threatening ecological security and human health. Biochar is effective in remediation of soil pollution. However, high concentrations of biochar can inhibit plant growth, and low concentrations of biochar have limited mitigation effect on cadmium toxicity. Therefore, the combination of low-concentration biochar and other amendments is a promising approach to alleviate cadmium toxicity in plants and improve the safety of edible parts. In this study, muskmelon was selected as the research object, and different concentrations of α-Fe2O3 nanoparticles were used alone or combined with biochar to explore the effects of different treatments on muskmelon plants in cadmium-contaminated soil. The results showed that the combined application of 250 mg/kg α-Fe2O3 nanoparticles and biochar had a good effect on the repair of cadmium toxicity in muskmelon plants. Compared with cadmium treatment, its application increased plant height by 32.53%, cadmium transport factor from root to stem decreased by 32.95%, chlorophyll content of muskmelon plants increased by 14.27%, and cadmium content in muskmelon flesh decreased by 18.83%. Moreover, after plant harvest, soil available cadmium content in 250 mg/kg α-Fe2O3 nanoparticles and biochar combined treatment decreased by 31.18% compared with cadmium treatment. The results of this study provide an effective reference for the composite application of different exogenous amendments and a feasible idea for soil heavy metal remediation and mitigation of cadmium pollution in farmland.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Frutas/química , Carvão Vegetal/farmacologia , Solo , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
2.
Environ Sci Pollut Res Int ; 30(20): 57945-57959, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36971939

RESUMO

Cadmium is toxic to plants. The accumulation of cadmium in edible plants such as muskmelon may affect the safe production of crops and result in human health problem. Thus effective measures are urgently needed for soil remediation. This work aims to investigate the effects of nano-ferric oxide and biochar alone or mixture on muskmelon under cadmium stress. The results of growth and physiological indexes showed that compared with the application of cadmium alone, the composite treatment (biochar and nano-ferric oxide) decreased malondialdehyde content by 59.12% and ascorbate peroxidase activity increased by 276.6%. Their addition can increase the stress resistance of plants. The results of soil analysis and cadmium content determination in plants showed that the composite treatment was beneficial to reduce the cadmium content in various parts of muskmelon. In the presence of high concentration of cadmium, the Target Hazard Quotient value of peel and flesh of muskmelon in the composite treatment was less than 1, which means the edible risk was greatly reduced. Furthermore, the addition of composite treatment increased the content of effective components; the contents of polyphenols, flavonoids, and saponins in the flesh of the compound treatment were increased by 99.73%, 143.07%, and 18.78% compared with the cadmium treatment. The results provide a technical reference for the further application of biochar combined with nano-ferric oxide in the field of soil heavy metal remediation, and provide a theoretical basis for further research on reducing the toxicity of cadmium to plants and improving the edible quality of crops.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo , Carvão Vegetal/farmacologia , Produtos Agrícolas , Óxidos/análise
3.
Plant Physiol Biochem ; 197: 107661, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989990

RESUMO

Cadmium pollution in agricultural soil is a great threat to crop growth and human health. In this research, with 1%, 3% and 5% biochar applied to control soil cadmium pollution, melon was selected to be the experimental object for physiological detection and transcriptome analysis, through which we explored the mechanism of cadmium tolerance and biochar mitigating cadmium stress in muskmelon. Three set concentrations of biochar have a mitigative effect on muskmelon cadmium stress, and 5% biochar and 3% biochar respectively have the best and the worst alleviative effect. The alleviation of biochar to cadmium stress on muskmelon is primarily in the manner of inhibiting cadmium transfer, while the resistance of muskmelon to cadmium stress is through activating phenylpropanoid pathway and overexpressing stress related genes. Under cadmium treatment, 11 genes of the phenylpropane pathway and 19 stress-related genes including cytochrome P450 family protein genes and WRKY transcription factor genes were up-regulated, while 1%, 3%, 5% biochar addition significantly downregulated 3, 0, 7 phenylpropane pathway genes and 17, 5, 16 stress-related genes, respectively. Genes such as cytochrome P450 protein family genes, WRKY transcription factor genes, and annexin genes may play a key role in muskmelon's resistance to cadmium stress. The results show the key pathways and genes of cadmium stress resistance and the effect of different concentrations of biochar in alleviating cadmium stress, which provide a reference for the research of cadmium stress resistance in crops and the application of biochar in cadmium pollution in agricultural soil.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Transcriptoma , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal/farmacologia , Solo , Fatores de Transcrição , Sistema Enzimático do Citocromo P-450
4.
Molecules ; 27(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35566265

RESUMO

Muskmelon pedicel is the fruit stalk of muskmelon and one of the traditional Chinese medicines, which can be used to treat jaundice, diabetes and neuropathy. However, in recent years, agricultural soil heavy metal cadmium (Cd) pollution has become serious, coupled with the imperfect sales management of herbal medicine, increasing the potential health risk of contaminated herbal medicine in the human body. In this paper, the comprehensive quality of contaminated muskmelon was tested. The results showed that Cd stress significantly inhibited the growth of muskmelon plants, reduced the anthocyanin and chlorophyll contents, and increased the fruit size and sweetness of muskmelon. In addition, heavy metal Cd can also cause oxidative stress in plants, resulting in a series of changes in antioxidant enzyme activities. In the experimental group, the content of polyphenols and saponins increased by 27.02% and 23.92%, respectively, after high-concentration Cd treatment, which may be a mechanism of plant resistance to stress. This paper reveals that the content of bioactive substances in Chinese herbal medicine is high, but the harm in heavy metals cannot be underestimated, which should be paid attention to by relevant departments.


Assuntos
Cucumis melo , Poluentes do Solo , Agricultura , Antioxidantes/farmacologia , Cádmio/química , Clorofila/farmacologia , Frutas/química , Humanos , Solo/química , Poluentes do Solo/toxicidade
5.
J Nanobiotechnology ; 19(1): 442, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930295

RESUMO

BACKGROUND: Due to the severe cadmium (Cd) pollution of farmland soil, effective measures need to be taken to reduce the Cd content in agricultural products. In this study, we added α-Fe2O3 nanoparticles (NPs) and biochar into Cd-contaminated soil to investigate physiological responses of muskmelon in the whole life cycle. RESULTS: The results showed that Cd caused adverse impacts on muskmelon (Cucumis melo) plants. For instance, the chlorophyll of muskmelon leaves in the Cd alone treatment was reduced by 8.07-32.34% in the four periods, relative to the control. The treatments with single amendment, α-Fe2O3 NPs or 1% biochar or 5% biochar, significantly reduced the soil available Cd content, but the co-exposure treatments (α-Fe2O3 NPs and biochar) had no impact on the soil available Cd content. All treatments could reduce the Cd content by 47.64-74.60% and increase the Fe content by 15.15-95.27% in fruits as compared to the Cd alone treatment. The KEGG enrichment results of different genes in different treatments indicated that single treatments could regulate genes related to anthocyanin biosynthesis, glutathione metabolism and MAPK signal transduction pathways to reduce the Cd toxicity. CONCLUSIONS: Overall the combination of biochar and α-Fe2O3 NPs can alleviate Cd toxicity in muskmelon. The present study could provide new insights into Cd remediation in soil using α-Fe2O3 NPs and biochar as amendments.


Assuntos
Cádmio/análise , Carvão Vegetal/química , Cucumis/crescimento & desenvolvimento , Compostos Férricos/química , Nanopartículas Metálicas/química , Antioxidantes/metabolismo , Cádmio/química , Cádmio/toxicidade , Clorofila/análise , Cucumis/química , Cucumis/efeitos dos fármacos , Compostos Férricos/metabolismo , Frutas/química , Frutas/metabolismo , Glutationa/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Transdução de Sinais/efeitos dos fármacos , Solo/química , Transcriptoma/efeitos dos fármacos
6.
Environ Pollut ; 266(Pt 1): 115371, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32818669

RESUMO

Soil contamination with cadmium (Cd) has become a serious problem, adversely affecting food safety and human health. Effective methods are urgently needed to alleviate toxicity of Cd in plants. In this study, a nine-week continuous pot experiments was conducted to explore the effectiveness of the different nano iron oxide (α-Fe2O3, γ-Fe2O3, Fe3O4) alone and combined with biochar in muskmelon grown on a Cd-contaminated soil. The antioxidant system, chlorophyll, soluble protein, other physiological indexes of muskmelon leaves and the distribution of Cd in matrix soil, leaves and fruit were detected. The results showed that Cd was readily absorbed by plants and caused oxidative stress on plants, while biochar, α-Fe2O3 nanoparticles (NPs) and their mixture group (BFe1 group) could significantly improve it. Specifically, the three treatments reduced the Cd content of the fruit by 19.51-78.86%, reduced the Cd content of leaves by 15.44-36.23% and 22.36-31.77% in weeks 3 and 5, respectively. For the activity of enzymes, three treatments decreased superoxide dismutase (SOD) activity and catalase (CAT) activity by 3.41-38.57% and 24.27-30.33% in week 7, respectively. So BFe1 group application immobilized Cd in soil and reduced Cd partitioning in the aboveground tissues. Overall the combination of biochar and α-Fe2O3 NPs can alleviate Cd toxicity in muskmelon and can protect human beings from Cd exposure.


Assuntos
Cádmio/análise , Poluentes do Solo/análise , Carvão Vegetal , Óxidos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA