Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 102(2): 145-158, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38011682

RESUMO

Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a) is an active histone mark catalyzed by protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase in vertebrates catalyzing asymmetric dimethylation of arginine. H4R3me2a stimulates the activity of lysine acetyltransferases such as CBP/p300, which catalyze the acetylation of H3K27, a mark of active enhancers, super-enhancers, and promoters. There are a few studies on the genomic location of H4R3me2a. In chicken polychromatic erythrocytes, H4R3me2a is found in introns and intergenic regions and binds to the globin locus control region (a super-enhancer) and globin regulatory regions. In this report, we analyzed chromatin immunoprecipitation sequencing data for the genomic location of H4R3me2a in the breast cancer cell line MCF7. As in avian cells, MCF7 H4R3me2a is present in intronic and intergenic regions. Nucleosomes with H4R3me2a and H3K27ac next to nucleosome-free regions are found at super-enhancers, enhancers, and promoter regions of expressed genes. Genes with critical roles in breast cancer cells have broad domains of nucleosomes with H4R3me2a, H3K27ac, and H3K4me3. Our results are consistent with PRMT1-mediated H4R3me2a playing a key role in the chromatin organization of regulatory regions of vertebrate genomes.


Assuntos
Histonas , Nucleossomos , Animais , Histonas/genética , Histonas/metabolismo , Arginina/genética , DNA Intergênico , Globinas/genética , Globinas/metabolismo , Cromatina , Acetilação
2.
Cell Stress Chaperones ; 26(1): 253-264, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33123915

RESUMO

During the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.


Assuntos
Estresse do Retículo Endoplasmático , Fatores de Iniciação em Eucariotos/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Interferência de RNA , Transcriptoma , Ativação Enzimática , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , RNA Interferente Pequeno/genética
3.
EMBO Rep ; 15(4): 402-10, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24534129

RESUMO

Small non-coding RNAs (smRNAs) are known to be significantly enriched near the transcriptional start sites of genes. However, the functional relevance of these smRNAs remains unclear, and they have not been associated with human disease. Within the cancer genome atlas project (TCGA), we have generated small RNA datasets for many tumor types. In prior cancer studies, these RNAs have been regarded as transcriptional "noise," due to their apparent chaotic distribution. In contrast, we demonstrate their striking potential to distinguish efficiently between cancer and normal tissues and classify patients with cancer to subgroups of distinct survival outcomes. This potential to predict cancer status is restricted to a subset of these smRNAs, which is encoded within the first exon of genes, highly enriched within CpG islands and negatively correlated with DNA methylation levels. Thus, our data show that genome-wide changes in the expression levels of small non-coding RNAs within first exons are associated with cancer.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Pequeno RNA não Traduzido/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/mortalidade , Ilhas de CpG , Metilação de DNA , Éxons , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fases de Leitura Aberta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Análise de Sequência de DNA , Análise de Sobrevida , Sítio de Iniciação de Transcrição , Transcriptoma
4.
J Biol Chem ; 286(19): 17359-64, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454525

RESUMO

MicroRNAs (miRNAs) are emerging critical regulators of cell function that frequently reside in clusters throughout the genome. They influence a myriad of cell functions, including the generation of induced pluripotent stem cells, also termed reprogramming. Here, we have successfully delivered entire miRNA clusters into reprogramming fibroblasts using retroviral vectors. This strategy avoids caveats associated with transient transfection of chemically synthesized miRNA mimics. Overexpression of 2 miRNA clusters, 106a-363 and in particular 302-367, allowed potent increases in induced pluripotent stem cell generation efficiency in mouse fibroblasts using 3 exogenous factors (Sox2, Klf4, and Oct4). Pathway analysis highlighted potential relevant effectors, including mesenchymal-to-epithelial transition, cell cycle, and epigenetic regulators. Further study showed that miRNA cluster 302-367 targeted TGFß receptor 2, promoted increased E-cadherin expression, and accelerated mesenchymal-to-epithelial changes necessary for colony formation. Our work thus provides an interesting alternative for improving reprogramming using miRNAs and adds new evidence for the emerging relationship between pluripotency and the epithelial phenotype.


Assuntos
MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Adesão Celular , Células Epiteliais/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Masculino , Mesoderma/citologia , Camundongos , MicroRNAs/genética , Fenótipo , Células-Tronco/citologia
5.
Mol Hum Reprod ; 16(11): 793-803, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20566704

RESUMO

Cells originating from the germ cell lineage retain the remarkable property under special culture conditions to give rise to cells with embryonic stem cell (ESC) properties, such as the multipotent adult germline stem cells (maGSCs) derived from adult mouse testis. To get an insight into the mechanisms that control pluripotency and differentiation in these cells, we studied how differences observed during in vitro differentiation between ESCs and maGSCs are associated with differences at the level of microRNAs (miRNAs). In this work, we provide for a first time a connection between germ cell origin of maGSCs and their specific miRNA expression profile. We found that maGSCs express higher levels of germ cell markers characteristic for primordial germ cells (PGCs) and spermatogonia compared with ESCs. Retained expression of miR-290 cluster has been previously reported in maGSCs during differentiation and it was associated with higher Oct-4 levels. Here, we show that this property is also shared by another pluripotent cell line originating from the germ line, the embryonic germ cells. In addition, we provide proof that the specific miRNA expression profile of maGSCs has an impact on their differentiation potential. Low levels of miR-302 in maGSCs during the first 10 days of leukaemia inhibitory factor deprivation are shown to be necessary for the maintenance of high levels of early germ cell markers.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , MicroRNAs , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Simulação por Computador , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Mol Hum Reprod ; 14(9): 521-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18697907

RESUMO

Spermatogonial stem cells (SSCs) isolated from the adult mouse testis and cultured have been shown to respond to culture conditions and become pluripotent, so called multipotent adult germline stem cells (maGSCs). microRNAs (miRNAs) belonging to the 290 and 302 miRNA clusters have been previously classified as embryonic stem cell (ESC) specific. Here, we show that these miRNAs generally characterize pluripotent cells. They are expressed not only in ESCs but also in maGSCs as well as in the F9 embryonic carcinoma cell (ECC) line. In addition, we tested the time-dependent influence of different factors that promote loss of pluripotency on levels of these miRNAs in all three pluripotent cell types. Despite the differences regarding time and extent of differentiation observed between ESCs and maGSCs, expression profiles of both miRNA families showed similarities between these two cell types, suggesting similar underlying mechanisms in maintenance of pluripotency and differentiation. Our results indicate that the 290-miRNA family is connected with Oct-4 and maintenance of the pluripotent state. In contrast, members of the 302-miRNA family are induced during first stages of in vitro differentiation in all cell types tested. Therefore, detection of miRNAs of miR-302 family in pluripotent cells can be attributed to the proportion of spontaneously differentiating cells in cultures of pluripotent cells. These results are consistent with ESC-like nature of maGSCs and their potential as an alternative source of pluripotent cells from non-embryonic tissues.


Assuntos
Células-Tronco Adultas/metabolismo , Células-Tronco Embrionárias/metabolismo , MicroRNAs/genética , Células-Tronco/metabolismo , Células-Tronco Adultas/citologia , Fatores Etários , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Células Germinativas/citologia , Células Germinativas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , MicroRNAs/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA