Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Neurology ; 101(23): e2423-e2433, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37848331

RESUMO

BACKGROUND AND OBJECTIVES: Deep brain stimulation (DBS) of the ventral tegmental area (VTA) is a surgical treatment option for selected patients with refractory chronic cluster headache (CCH). We aimed to identify clinical and structural neuroimaging factors associated with response to VTA DBS in CCH. METHODS: This prospective observational cohort study examines consecutive patients with refractory CCH treated with VTA DBS by a multidisciplinary team in a single tertiary neuroscience center as part of usual care. Headache diaries and validated questionnaires were completed at baseline and regular follow-up intervals. All patients underwent T1-weighted structural MRI before surgery. We compared clinical features using multivariable logistic regression and neuroanatomic differences using voxel-based morphometry (VBM) between responders and nonresponders. RESULTS: Over a 10-year period, 43 patients (mean age 53 years, SD 11.9), including 29 male patients, with a mean duration of CCH 12 years (SD 7.4), were treated and followed up for at least 1 year (mean follow-up duration 5.6 years). Overall, there was a statistically significant improvement in median attack frequency from 140 to 56 per month (Z = -4.95, p < 0.001), attack severity from 10/10 to 8/10 (Z = -4.83, p < 0.001), and duration from 110 to 60 minutes (Z = -3.48, p < 0.001). Twenty-nine (67.4%) patients experienced ≥50% improvement in attack frequency and were therefore classed as responders. There were no serious adverse events. The most common side effects were discomfort or pain around the battery site (7 patients) and transient diplopia and/or oscillopsia (6 patients). There were no differences in demographics, headache characteristics, or comorbidities between responders and nonresponders. VBM identified increased neural density in nonresponders in several brain regions, including the orbitofrontal cortex, anterior cingulate cortex, anterior insula, and amygdala, which were statistically significant (p < 0.001). DISCUSSION: VTA DBS showed no serious adverse events, and, although there was no placebo control, was effective in approximately two-thirds of patients at long-term follow-up. This study did not reveal any reliable clinical predictors of response. However, nonresponders had increased neural density in brain regions linked to processing of pain and autonomic function, both of which are prominent in the pathophysiology of CCH.


Assuntos
Cefaleia Histamínica , Estimulação Encefálica Profunda , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cefaleia Histamínica/terapia , Estimulação Encefálica Profunda/métodos , Cefaleia/etiologia , Dor/etiologia , Estudos Prospectivos , Resultado do Tratamento , Área Tegmentar Ventral/diagnóstico por imagem
2.
Brain Sci ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291313

RESUMO

(1) Background: Major depressive disorder (MDD) generates a large proportion of global disease burden. Stereotactic radiofrequency ablation (SRA) may be beneficial for selected patients with its most debilitating and refractory forms, but effect size is uncertain. (2) Methods: A systematic literature review and meta-analysis on SRA for MDD was carried out. Patient-level data were extracted from articles reporting validated depression measures (Beck Depression Inventory (BDI), Montgomery-Åsberg Depression Rating Scale (MADRS)), pre- and at least six months post surgery. To accommodate different outcome measures, the standardised mean difference (SMD) between both scores was used as the principal effect size. Data were synthesised using a random-effects model. (3) Results: Five distinct studies were identified, comprising 116 patients (64 included in meta-analysis). Effect size comparing post- vs. pre-operative scores was 1.66 (CI 1.25-2.07). Anterior cingulotomy (two studies, n = 22) and anterior capsulotomy (three studies, n = 42) showed similar effect sizes: 1.51 (CI 0.82-2.20) vs. 1.74 (CI 1.23-2.26). Multiple procedures were performed in 30 of 116 (25.9%) patients. Based on patient-level data, 53% (n = 47) were responders (≥50% improvement), of which 34% reached remission (MADRS ≤ 10 or BDI ≤ 11). BDI mean improvement was 16.7 (44.0%) after a second procedure (n = 19). (4) Conclusions: The results are supportive of the benefit of SRA in selected patients with refractory MDD.

3.
J Neurosurg ; : 1-10, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36308483

RESUMO

OBJECTIVE: Suboptimal lead placement is one of the most common indications for deep brain stimulation (DBS) revision procedures. Confirming lead placement in relation to the visible anatomical target with dedicated stereotactic imaging before terminating the procedure can mitigate this risk. In this study, the authors examined the accuracy, precision, and safety of intraoperative MRI (iMRI) to both guide and verify lead placement during frame-based stereotactic surgery. METHODS: A retrospective analysis of 650 consecutive DBS procedures for targeting accuracy, precision, and perioperative complications was performed. Frame-based lead placement took place in an operating room equipped with an MRI machine using stereotactic images to verify lead placement before removing the stereotactic frame. Immediate lead relocation was performed when necessary. Systematic analysis of the targeting error was calculated. RESULTS: Verification of 1201 DBS leads with stereotactic MRI was performed in 643 procedures and with stereotactic CT in 7. The mean ± SD of the final targeting error was 0.9 ± 0.3 mm (range 0.1-2.3 mm). Anatomically acceptable lead placement was achieved with a single brain pass for 97% (n = 1164) of leads; immediate intraoperative relocation was performed in 37 leads (3%) to obtain satisfactory anatomical placement. General anesthesia was used in 91% (n = 593) of the procedures. Hemorrhage was noted after 4 procedures (0.6%); 3 patients (0.4% of procedures) presented with transient neurological symptoms, and 1 experienced delayed cognitive decline. Two bleeds coincided with immediate relocation (2 of 37 leads, 5.4%), which contrasts with hemorrhage in 2 (0.2%) of 1164 leads implanted on the first pass (p = 0.0058). Three patients had transient seizures in the postoperative period. The seizures coincided with hemorrhage in 2 of these patients and with immediate lead relocation in the other. There were 21 infections (3.2% of procedures, 1.5% in 3 months) leading to hardware removal. Delayed (> 3 months) retargeting of 6 leads (0.5%) in 4 patients (0.6% of procedures) was performed because of suboptimal stimulation benefit. There were no MRI-related complications, no permanent motor deficits, and no deaths. CONCLUSIONS: To the authors' knowledge, this is the largest series reporting the use of iMRI to guide and verify lead location during DBS surgery. It demonstrates a high level of accuracy, precision, and safety. Significantly higher hemorrhage was encountered when multiple brain passes were required for lead implantation, although none led to permanent deficit. Meticulous audit and calibration can improve precision and maximize safety.

4.
J Headache Pain ; 23(1): 114, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057552

RESUMO

BACKGROUND: Trigeminal neuralgia is an episodic severe neuralgic pain and can be managed both medically and surgically. If possible, this should be directed by a Multidisciplinary Team (MDT) of specialised surgeons, physicians, dentists, psychologists and specialist nurses with access to all treatment modalities, which enables patients to make an informed decision about their future management. OBJECTIVE: The aim of this study was to review the outcomes of patients managed by an MDT clinic, in a single institute over an eleven-year period. METHODS: A prospective database was used to identify patients with trigeminal neuralgia or its variants who had attended a joint MDT clinic. The electronic notes were examined for demographics, onset and duration of trigeminal neuralgia, medications history, pain scores and details of surgical procedures if any by two independent assessors. RESULTS: Three hundred thirty-four patients attended the MDT between 2008-2019. Forty-nine of them had surgery before being referred to the service and were included but analysed as a subgroup. Of the remaining patients, 54% opted to have surgery following the MDT either immediately or at a later date. At the last reported visit 55% of patients who opted to have surgery were pain free and off medications, compared to 15.5% of medically managed patients. Surgical complications were mostly attributable to numbness and in the majority of cases this was temporary. All patients who were not pain free, had complications after surgery or opted to remain on medical therapy were followed up in a facial pain clinic which has access to pain physicians, clinical nurse specialists and a tailored pain management program. Regular patient related outcome measures are collected to evaluate outcomes. CONCLUSION: An MDT clinic offers an opportunity for shared decision making with patients deciding on their personal care pathway which is valued by patients. Not all patients opt for surgery, and some continue to attend a multidisciplinary follow up program. Providing a full range of services including psychological support, improves outcomes.


Assuntos
Radiocirurgia , Neuralgia do Trigêmeo , Dor Facial , Seguimentos , Humanos , Clínicas de Dor , Resultado do Tratamento , Neuralgia do Trigêmeo/diagnóstico , Neuralgia do Trigêmeo/cirurgia
5.
Brain ; 145(8): 2882-2893, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35325067

RESUMO

A significant proportion of patients with short-lasting unilateral neuralgiform headache attacks are refractory to medical treatments. Neuroimaging studies have suggested a role for ipsilateral trigeminal neurovascular conflict with morphological changes in the pathophysiology of this disorder. We present the outcome of an uncontrolled open-label prospective single-centre study conducted between 2012 and 2020, to evaluate the efficacy and safety of trigeminal microvascular decompression in refractory chronic short-lasting unilateral neuralgiform headache attacks with MRI evidence of trigeminal neurovascular conflict ipsilateral to the pain side. Primary endpoint was the proportion of patients who achieved an 'excellent response', defined as 90-100% weekly reduction in attack frequency, or 'good response', defined as a reduction in weekly headache attack frequency between 75% and 89% at final follow-up, compared to baseline. These patients were defined as responders. The study group consisted of 47 patients, of whom 31 had short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing, and 16 had short-lasting unilateral neuralgiform headache attacks with cranial autonomic symptoms (25 females, mean age ± SD 55.2 years ± 14.8). Participants failed to respond or tolerate a mean of 8.1 (±2.7) preventive treatments pre-surgery. MRI of the trigeminal nerves (n = 47 patients, n = 50 symptomatic trigeminal nerves) demonstrated ipsilateral neurovascular conflict with morphological changes in 39/50 (78.0%) symptomatic nerves and without morphological changes in 11/50 (22.0%) symptomatic nerves. Postoperatively, 37/47 (78.7%) patients obtained either an excellent or a good response. Ten patients (21.3%, short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing = 7 and short-lasting unilateral neuralgiform headache attacks with cranial autonomic symptoms = 3) reported no postoperative improvement. The mean post-surgery follow-up was 57.4 ± 24.3 months (range 11-96 months). At final follow-up, 31 patients (66.0%) were excellent/good responders. Six patients experienced a recurrence of headache symptoms. There was no statistically significant difference between short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing and short-lasting unilateral neuralgiform headache attacks in the response to surgery (P = 0.463). Responders at the last follow-up were, however, more likely to not have interictal pain (77.42% versus 22.58%, P = 0.021) and to show morphological changes on the MRI (78.38% versus 21.62%, P = 0.001). The latter outcome was confirmed in the Kaplan-Meyer analysis, where patients with no morphological changes were more likely to relapse overtime compared to those with morphological changes (P = 0.0001). All but one patient, who obtained an excellent response without relapse, discontinued their preventive medications. Twenty-two post-surgery adverse events occurred in 18 patients (46.8%) but no mortality or severe neurological deficit was seen. Trigeminal microvascular decompression may be a safe and effective long-term treatment for patients suffering short-lasting unilateral neuralgiform headache attacks with MRI evidence of neurovascular conflict with morphological changes.


Assuntos
Cirurgia de Descompressão Microvascular , Síndrome SUNCT , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Recidiva , Síndrome SUNCT/cirurgia
6.
Brain ; 145(1): 237-250, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34264308

RESUMO

Exaggerated local field potential bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the subthalamic nucleus local field potential in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. Local field potentials were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the subthalamic nucleus. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. Local field potentials were analysed using hidden Markov modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional local field potential states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all local field potential states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the subthalamic nucleus local field potential have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how local field potential feedback can be made more informative in closed-loop deep brain stimulation systems.


Assuntos
Estimulação Encefálica Profunda , Transtornos Motores , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiologia
7.
J Headache Pain ; 22(1): 52, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092221

RESUMO

BACKGROUND: Cluster headache (CH) is a trigeminal autonomic cephalalgia (TAC) characterized by a highly disabling headache that negatively impacts quality of life and causes limitations in daily functioning as well as social functioning and family life. Since specific measures to assess the quality of life (QoL) in TACs are lacking, we recently developed and validated the cluster headache quality of life scale (CH-QoL). The sensitivity of CH-QoL to change after a medical intervention has not been evaluated yet. METHODS: This study aimed to test the sensitivity to change of the CH-QoL in CH. Specifically we aimed to (i) assess the sensitivity of CH-QoL to change before and following deep brain stimulation of the ventral tegmental area (VTA-DBS), (ii) evaluate the relationship of changes on CH-QoL with changes in other generic measures of quality of life, as well as indices of mood and pain. Ten consecutive CH patients completed the CH-QoL and underwent neuropsychological assessment before and after VTA-DBS. The patients were evaluated on headache frequency, severity, and load (HAL) as well as on tests of generic quality of life (Short Form-36 (SF-36)), mood (Beck Depression Inventory, Hospital Anxiety and Depression Rating Scale), and pain (McGill Pain Questionnaire, Headache Impact Test, Pain Behaviour Checklist). RESULTS: The CH-QoL total score was significantly reduced after compared to before VTA-DBS. Changes in the CH-QoL total score correlated significantly and negatively with changes in HAL, the SF-36, and positively and significantly with depression and the evaluative domain on the McGill Pain Questionnaire. CONCLUSIONS: Our findings demonstrate that changes after VTA-DBS in CH-QoL total scores are associated with the reduction of frequency, duration, and severity of headache attacks after surgery. Moreover, post VTA-DBS improvement in CH-QoL scores is associated with an amelioration in quality of life assessed with generic measures, a reduction of depressive symptoms, and evaluative pain experience after VTA-DBS. These results support the sensitivity to change of the CH-QoL and further demonstrate the validity and applicability of CH-QoL as a disease specific measure of quality of life for CH.


Assuntos
Cefaleia Histamínica , Estimulação Encefálica Profunda , Cefaleia Histamínica/terapia , Humanos , Dor , Qualidade de Vida , Área Tegmentar Ventral
8.
Neuroimage ; 238: 118231, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089871

RESUMO

The ventralis intermedius nucleus (Vim) is centrally placed in the dentato-thalamo-cortical pathway (DTCp) and is a key surgical target in the treatment of severe medically refractory tremor. It is not visible on conventional MRI sequences; consequently, stereotactic targeting currently relies on atlas-based coordinates. This fails to capture individual anatomical variability, which may lead to poor long-term clinical efficacy. Probabilistic tractography, combined with known anatomical connectivity, enables localisation of thalamic nuclei at an individual subject level. There are, however, a number of confounds associated with this technique that may influence results. Here we focused on an established method, using probabilistic tractography to reconstruct the DTCp, to identify the connectivity-defined Vim (cd-Vim) in vivo. Using 100 healthy individuals from the Human Connectome Project, our aim was to quantify cd-Vim variability across this population, measure the discrepancy with atlas-defined Vim (ad-Vim), and assess the influence of potential methodological confounds. We found no significant effect of any of the confounds. The mean cd-Vim coordinate was located within 1.88 mm (left) and 2.12 mm (right) of the average midpoint and 3.98 mm (left) and 5.41 mm (right) from the ad-Vim coordinates. cd-Vim location was more variable on the right, which reflects hemispheric asymmetries in the probabilistic DTC reconstructed. The method was reproducible, with no significant cd-Vim location differences in a separate test-retest cohort. The superior cerebellar peduncle was identified as a potential source of artificial variance. This work demonstrates significant individual anatomical variability of the cd-Vim that atlas-based coordinate targeting fails to capture. This variability was not related to any methodological confound tested. Lateralisation of cerebellar functions, such as speech, may contribute to the observed asymmetry. Tractography-based methods seem sensitive to individual anatomical variability that is missed by conventional neurosurgical targeting; these findings may form the basis for translational tools to improve efficacy and reduce side-effects of thalamic surgery for tremor.


Assuntos
Imagem de Tensor de Difusão/métodos , Rede Nervosa/anatomia & histologia , Núcleos Ventrais do Tálamo/anatomia & histologia , Adulto , Variação Biológica Individual , Núcleos Cerebelares/anatomia & histologia , Cerebelo/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Fatores de Confusão Epidemiológicos , Conectoma , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Probabilidade , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Adulto Jovem
9.
Brain Sci ; 11(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916444

RESUMO

As part of the first randomized double-blind trial of deep brain stimulation (DBS) of the globus pallidus (GPi) in Tourette syndrome, we examined the effect of stimulation on response initiation and inhibition. A total of 14 patients with severe Tourette syndrome were recruited and tested on the stop signal task prior to and after GPi-DBS surgery and compared to eight age-matched healthy controls. Tics were significantly improved following GPi-DBS. The main measure of reactive inhibition, the stop signal reaction time did not change from before to after surgery and did not differ from that of healthy controls either before or after GPi-DBS surgery. This suggests that patients with Tourette syndrome have normal reactive inhibition which is not significantly altered by GPi-DBS.

11.
Neuroimage ; 224: 117307, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861787

RESUMO

Brain connectivity profiles seeding from deep brain stimulation (DBS) electrodes have emerged as informative tools to estimate outcome variability across DBS patients. Given the limitations of acquiring and processing patient-specific diffusion-weighted imaging data, a number of studies have employed normative atlases of the human connectome. To date, it remains unclear whether patient-specific connectivity information would strengthen the accuracy of such analyses. Here, we compared similarities and differences between patient-specific, disease-matched and normative structural connectivity data and their ability to predict clinical improvement. Data from 33 patients suffering from Parkinson's Disease who underwent surgery at three different centers were retrospectively collected. Stimulation-dependent connectivity profiles seeding from active contacts were estimated using three modalities, namely patient-specific diffusion-MRI data, age- and disease-matched or normative group connectome data (acquired in healthy young subjects). Based on these profiles, models of optimal connectivity were calculated and used to estimate clinical improvement in out of sample data. All three modalities resulted in highly similar optimal connectivity profiles that could largely reproduce findings from prior research based on this present novel multi-center cohort. In a data-driven approach that estimated optimal whole-brain connectivity profiles, out-of-sample predictions of clinical improvements were calculated. Using either patient-specific connectivity (R = 0.43 at p = 0.001), an age- and disease-matched group connectome (R = 0.25, p = 0.048) and a normative connectome based on healthy/young subjects (R = 0.31 at p = 0.028), significant predictions could be made. Our results of patient-specific connectivity and normative connectomes lead to similar main conclusions about which brain areas are associated with clinical improvement. Still, although results were not significantly different, they hint at the fact that patient-specific connectivity may bear the potential of explaining slightly more variance than group connectomes. Furthermore, use of normative connectomes involves datasets with high signal-to-noise acquired on specialized MRI hardware, while clinical datasets as the ones used here may not exactly match their quality. Our findings support the role of DBS electrode connectivity profiles as a promising method to investigate DBS effects and to potentially guide DBS programming.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Adulto , Conectoma/métodos , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
12.
Neuroimage ; 223: 117356, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32916287

RESUMO

This study offers a novel and efficient measure based on a higher order version of autocorrelative signal memory that can identify nonlinearities in a single time series. The suggested method was applied to simultaneously recorded subthalamic nucleus (STN) local field potentials (LFP) and magnetoencephalography (MEG) from fourteen Parkinson's Disease (PD) patients who underwent surgery for deep brain stimulation. Recordings were obtained during rest for both OFF and ON dopaminergic medication states. We analyzed the bilateral LFP channels that had the maximum beta power in the OFF state and the cortical sources that had the maximum coherence with the selected LFP channels in the alpha band. Our findings revealed the inherent nonlinearity in the PD data as subcortical high beta (20-30 Hz) band and cortical alpha (8-12 Hz) band activities. While the former was discernible without medication (p=0.015), the latter was induced upon the dopaminergic medication (p<6.10-4). The degree of subthalamic nonlinearity was correlated with contralateral tremor severity (r=0.45, p=0.02). Conversely, for the cortical signals nonlinearity was present for the ON medication state with a peak in the alpha band and correlated with contralateral akinesia and rigidity (r=0.46, p=0.02). This correlation appeared to be independent from that of alpha power and the two measures combined explained 34 % of the variance in contralateral akinesia scores. Our findings suggest that particular frequency bands and brain regions display nonlinear features closely associated with distinct motor symptoms and functions.


Assuntos
Mapeamento Encefálico/métodos , Ondas Encefálicas , Córtex Cerebral/fisiopatologia , Magnetoencefalografia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador
13.
Neuroimage ; 221: 117184, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711059

RESUMO

Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are two related diseases which can be difficult to distinguish. There is no objective biomarker which can reliably differentiate between them. The synergistic combination of electrophysiological and neuroimaging approaches is a powerful method for interrogation of functional brain networks in vivo. We recorded bilateral local field potentials (LFPs) from the nucleus basalis of Meynert (NBM) and the internal globus pallidus (GPi) with simultaneous cortical magnetoencephalography (MEG) in six PDD and five DLB patients undergoing surgery for deep brain stimulation (DBS) to look for differences in underlying resting-state network pathophysiology. In both patient groups we observed spectral peaks in the theta (2-8 Hz) band in both the NBM and the GPi. Furthermore, both the NBM and the GPi exhibited similar spatial and spectral patterns of coupling with the cortex in the two disease states. Specifically, we report two distinct coherent networks between the NBM/GPi and cortical regions: (1) a theta band (2-8 Hz) network linking the NBM/GPi to temporal cortical regions, and (2) a beta band (13-22 Hz) network coupling the NBM/GPi to sensorimotor areas. We also found differences between the two disease groups: oscillatory power in the low beta (13-22Hz) band was significantly higher in the globus pallidus in PDD patients compared to DLB, and coherence in the high beta (22-35Hz) band between the globus pallidus and lateral sensorimotor cortex was significantly higher in DLB patients compared to PDD. Overall, our findings reveal coherent networks of the NBM/GPi region that are common to both DLB and PDD. Although the neurophysiological differences between the two conditions in this study are confounded by systematic differences in DBS lead trajectories and motor symptom severity, they lend support to the hypothesis that DLB and PDD, though closely related, are distinguishable from a neurophysiological perspective.


Assuntos
Núcleo Basal de Meynert/fisiopatologia , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Conectoma , Demência/fisiopatologia , Globo Pálido/fisiopatologia , Doença por Corpos de Lewy/fisiopatologia , Magnetoencefalografia , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Idoso , Núcleo Basal de Meynert/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Demência/diagnóstico por imagem , Feminino , Globo Pálido/diagnóstico por imagem , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem
14.
World Neurosurg ; 138: 454-456, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251825

RESUMO

BACKGROUND: Microvascular decompression (MVD) is a commonly performed procedure to treat trigeminal neuralgia and hemifacial spasm. Knowledge of the variable anatomy of the cerebellopontine angle is crucial to avoid injury to cranial nerves. CASE DESCRIPTION: A 76-year-old lady with right V1 (ophthalmic division of the trigeminal nerve) and V2 (maxillary division of the trigeminal nerve) trigeminal neuralgia, refractory to medical treatment, underwent elective MVD. Intraoperatively, a distorted course of the cisternal component of the abducent nerve was noticed, caused by an ectatic anterior inferior cerebellar artery. Careful mobilization of the offending vessel to decompress the trigeminal nerve was carried out; however, abducent nerve decompression was not attempted since its function was not compromised. Facial pain resolved postoperatively without new diplopia. CONCLUSIONS: Careful review of imaging before surgery is recommended in order to preempt such unusual anatomic variations.


Assuntos
Nervo Abducente/anormalidades , Cirurgia de Descompressão Microvascular/métodos , Procedimentos Neurocirúrgicos/métodos , Neuralgia do Trigêmeo/cirurgia , Nervo Abducente/diagnóstico por imagem , Idoso , Artérias Cerebrais/anormalidades , Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/cirurgia , Dor Facial/etiologia , Dor Facial/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Síndromes de Compressão Nervosa/cirurgia , Resultado do Tratamento , Neuralgia do Trigêmeo/complicações , Neuralgia do Trigêmeo/diagnóstico por imagem
15.
Brain Stimul ; 13(4): 1031-1039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32334074

RESUMO

BACKGROUND: Dementia with Lewy bodies (DLB) is the second most common form of dementia. Current symptomatic treatment with medications remains inadequate. Deep brain stimulation of the nucleus basalis of Meynert (NBM DBS) has been proposed as a potential new treatment option in dementias. OBJECTIVE: To assess the safety and tolerability of low frequency (20 Hz) NBM DBS in DLB patients and explore its potential effects on both clinical symptoms and functional connectivity in underlying cognitive networks. METHODS: We conducted an exploratory randomised, double-blind, crossover trial of NBM DBS in six DLB patients recruited from two UK neuroscience centres. Patients were aged between 50 and 80 years, had mild-moderate dementia symptoms and were living with a carer-informant. Patients underwent image guided stereotactic implantation of bilateral DBS electrodes with the deepest contacts positioned in the Ch4i subsector of NBM. Patients were subsequently assigned to receive either active or sham stimulation for six weeks, followed by a two week washout period, then the opposite condition for six weeks. Safety and tolerability of both the surgery and stimulation were systematically evaluated throughout. Exploratory outcomes included the difference in scores on standardised measurements of cognitive, psychiatric and motor symptoms between the active and sham stimulation conditions, as well as differences in functional connectivity in discrete cognitive networks on resting state fMRI. RESULTS: Surgery and stimulation were well tolerated by all six patients (five male, mean age 71.33 years). One serious adverse event occurred: one patient developed antibiotic-associated colitis, prolonging his hospital stay by two weeks. No consistent improvements were observed in exploratory clinical outcome measures, but the severity of neuropsychiatric symptoms reduced with NBM DBS in 3/5 patients. Active stimulation was associated with functional connectivity changes in both the default mode network and the frontoparietal network. CONCLUSION: Low frequency NBM DBS can be safely conducted in DLB patients. This should encourage further exploration of the possible effects of stimulation on neuropsychiatric symptoms and corresponding changes in functional connectivity in cognitive networks. TRIAL REGISTRATION NUMBER: NCT02263937.


Assuntos
Núcleo Basal de Meynert/fisiopatologia , Estimulação Encefálica Profunda/métodos , Doença por Corpos de Lewy/terapia , Idoso , Idoso de 80 Anos ou mais , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Parkinsonism Relat Disord ; 69: 14-18, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648149

RESUMO

INTRODUCTION: In a double-blind randomized crossover trial, we previously established that bilateral deep brain stimulation of the anteromedial globus pallidus internus (GPiam-DBS) is effective in significantly reducing tic severity in patients with refractory Tourette syndrome (TS). Here, we report the effects of bilateral GPiam-DBS on cognitive function in 11 of the 13 patients who had participated in our double-blind cross-over trial of GPi-DBS. METHODS: Patients were assessed at baseline (4 weeks prior to surgery) and at the end of each of the three-month blinded periods, with stimulation either ON or OFF. The patients were evaluated on tests of memory (California Verbal Learning Test-II (CVLT-II); Corsi blocks; Short Recognition Memory for Faces), executive function (D-KEFS Stroop color-word interference, verbal fluency, Trail-making test, Hayling Sentence Completion test), and attention (Paced Auditory Serial Addition Test, Numbers and Letters Test). RESULTS: GPiam-DBS did not produce any significant change in global cognition. Relative to pre-operative baseline assessment verbal episodic memory on the CVLT-II and set-shifting on the Trail-making Test were improved with DBS OFF. Performance on the cognitive tests were not different with DBS ON versus DBS OFF. GPiam-DBS did not alter aspects of cognition that are impaired in TS such as inhibition on the Stroop interference task or the Hayling Sentence Completion test. CONCLUSIONS: This study extends previous findings providing data showing that GPiam-DBS does not adversely affect cognitive domains such as memory, executive function, verbal fluency, attention, psychomotor speed, and information processing. These results indicate that GPiam-DBS does not produce any cognitive deficits in TS.


Assuntos
Cognição , Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Síndrome de Tourette/terapia , Adulto , Estudos Cross-Over , Estimulação Encefálica Profunda/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Curr Neurol Neurosci Rep ; 19(7): 42, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31144155

RESUMO

PURPOSE OF REVIEW: Ablations and particularly deep brain stimulation (DBS) of a variety of CNS targets are established therapeutic tools for movement disorders. Accurate targeting of the intended structure is crucial for optimal clinical outcomes. However, most targets used in functional neurosurgery are sub-optimally visualized on routine MRI. This article reviews recent neuroimaging advancements for targeting in movement disorders. RECENT FINDINGS: Dedicated MRI sequences can often visualize to some degree anatomical structures commonly targeted during DBS surgery, including at 1.5-T field strengths. Due to recent technological advancements, MR images using ultra-high magnetic field strengths and new acquisition parameters allow for markedly improved visualization of common movement disorder targets. In addition, novel neuroimaging techniques have enabled group-level analysis of DBS patients and delineation of areas associated with clinical benefits. These areas might diverge from the conventionally targeted nuclei and may instead correspond to white matter tracts or hubs of functional networks. Neuroimaging advancements have enabled improved direct visualization-based targeting as well as optimization and adjustment of conventionally targeted structures.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtornos dos Movimentos/diagnóstico por imagem , Neuroimagem/métodos , Humanos , Imageamento por Ressonância Magnética , Neurocirurgia , Procedimentos Neurocirúrgicos
19.
Clin Park Relat Disord ; 1: 48-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34316599

RESUMO

Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) is a relatively new treatment approach for the axial symptoms of Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP). The results concerning the clinical benefits are variable and inconsistent. The effect of PPN-DBS on limited aspects of cognitive function has been examined in a handful of mainly single or multiple case studies. The aim of this study was to investigate the effects of PPN-DBS for PD and PSP using a comprehensive battery of neuropsychological assessment covering the main cognitive domains. Five patients with PD and two patients with PSP who were consecutively operated at our centre with PPN-DBS were administered a neuropsychological battery of cognitive tests within one month prior to surgery and one year after surgery. The majority of tests of cognition showed no significant change from before to after surgery. The only aspects of cognition that showed reliable decline in a proportion of the patients were some indices of processing speed (Stroop colour naming control task, WAIS-III digit symbol) and category switching verbal fluency. Despite the small and heterogeneous sample, the results indicate that PPN-DBS is generally safe from a cognitive perspective.

20.
J Neurosci ; 38(22): 5111-5121, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29760182

RESUMO

Gait disturbances in Parkinson's disease are commonly refractory to current treatment options and majorly impair patient's quality of life. Auditory cues facilitate gait and prevent motor blocks. We investigated how neural dynamics in the human subthalamic nucleus of Parkinsons's disease patients (14 male, 2 female) vary during stepping and whether rhythmic auditory cues enhance the observed modulation. Oscillations in the beta band were suppressed after ipsilateral heel strikes, when the contralateral foot had to be raised, and reappeared after contralateral heel strikes, when the contralateral foot rested on the floor. The timing of this 20-30 Hz beta modulation was clearly distinct between the left and right subthalamic nucleus, and was alternating within each stepping cycle. This modulation was similar, whether stepping movements were made while sitting, standing, or during gait, confirming the utility of the stepping in place paradigm. During stepping in place, beta modulation increased with auditory cues that assisted patients in timing their steps more regularly. Our results suggest a link between the degree of power modulation within high beta frequency bands and stepping performance. These findings raise the possibility that alternating deep brain stimulation patterns may be superior to constant stimulation for improving parkinsonian gait.SIGNIFICANCE STATEMENT Gait disturbances in Parkinson's disease majorly reduce patients' quality of life and are often refractory to current treatment options. We investigated how neural activity in the subthalamic nucleus of patients who received deep brain stimulation surgery covaries with the stepping cycle. 20-30 Hz beta activity was modulated relative to each step, alternating between the left and right STN. The stepping performance of patients improved when auditory cues were provided, which went along with enhanced beta modulation. This raises the possibility that alternating stimulation patterns may also enhance beta modulation and may be more beneficial for gait control than continuous stimulation, which needs to be tested in future studies.


Assuntos
Ritmo beta , Núcleo Subtalâmico/fisiopatologia , Caminhada , Estimulação Acústica , Idoso , Fenômenos Biomecânicos , Sinais (Psicologia) , Estimulação Encefálica Profunda , Eletrodos Implantados , Retroalimentação Psicológica , Feminino , Marcha/fisiologia , Calcanhar/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Desempenho Psicomotor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA