RESUMO
SKD3, also known as human CLPB, belongs to the AAA+ family of ATPases associated with various activities. Mutations in the SKD3/CLPB gene cause 3-methylglutaconic aciduria type VII and congenital neutropenia. SKD3 is upregulated in acute myeloid leukemia, where it contributes to anti-cancer drug resistance. SKD3 resides in the mitochondrial intermembrane space, where it forms ATP-dependent high-molecular weight complexes, but its biological function and mechanistic links to the clinical phenotypes are currently unknown. Using sedimentation equilibrium and dynamic light scattering, we show that SKD3 is monomeric at low protein concentration in the absence of nucleotides, but it forms oligomers at higher protein concentration or in the presence of adenine nucleotides. The apparent molecular weight of the nucleotide-bound SKD3 is consistent with self-association of 12 monomers. Image-class analysis and averaging from negative-stain electron microscopy (EM) of SKD3 in the ATP-bound state visualized cylinder-shaped particles with an open central channel along the cylinder axis. The dimensions of the EM-visualized particle suggest that the SKD3 dodecamer is formed by association of two hexameric rings. While hexameric structure has been often observed among AAA+ ATPases, a double-hexamer sandwich found for SKD3 appears uncommon within this protein family. A functional significance of the non-canonical structure of SKD3 remains to be determined.
Assuntos
Endopeptidase Clp , Nucleotídeos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Trifosfato de Adenosina/metabolismo , Endopeptidase Clp/genética , Humanos , Mitocôndrias/metabolismo , Nucleotídeos/metabolismoRESUMO
Transient Receptor Potential (TRP) channels play numerous important physiological roles in humans. Notably, they are involved in temperature sensing and regulation, in the proper functioning of immune and cardiac systems, in skin, hair, and bone physiology and in many types of cancer. Because of their physiological significance there has been much interest in elucidating their molecular mechanisms of action. Recent improvements in eukaryotic protein expression and purification techniques and in cryo-electron microscopy (cryo-EM) have greatly facilitated TRP channel studies. The TRP Vanilloid 2 (TRPV2) channel has emerged as particularly amenable to structural studies and its structure has been solved by both X-ray crystallography and by cryo-EM. Here, we provide an overview of demands posed by X-ray crystallography and cryo-EM on protein sample preparation and outline a step-by-step protocol for preparing the TRPV2 protein for structure determination by both of these techniques.
Assuntos
Canais de Cátion TRPV , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Canais de Cátion TRPV/genéticaRESUMO
Transient receptor potential channel subfamily A member 1 (TRPA1) is a Ca2+-permeable cation channel that serves as one of the primary sensors of environmental irritants and noxious substances. Many TRPA1 agonists are electrophiles that are recognized by TRPA1 via covalent bond modifications of specific cysteine residues located in the cytoplasmic domains. However, a mechanistic understanding of electrophile sensing by TRPA1 has been limited due to a lack of high-resolution structural information. Here, we present the cryoelectron microscopy (cryo-EM) structures of nanodisc-reconstituted ligand-free TRPA1 and TRPA1 in complex with the covalent agonists JT010 and BITC at 2.8, 2.9, and 3.1 Å, respectively. Our structural and functional studies provide the molecular basis for electrophile recognition by the extraordinarily reactive C621 in TRPA1 and mechanistic insights into electrophile-dependent conformational changes in TRPA1. This work also provides a platform for future drug development targeting TRPA1.
Assuntos
Acetamidas/metabolismo , Irritantes/metabolismo , Isotiocianatos/metabolismo , Canal de Cátion TRPA1/ultraestrutura , Tiazóis/metabolismo , Acetamidas/farmacologia , Microscopia Crioeletrônica , Cisteína/metabolismo , Células HEK293 , Humanos , Irritantes/farmacologia , Isotiocianatos/farmacologia , Modelos Moleculares , Nociceptores , Dor/metabolismo , Técnicas de Patch-Clamp , Fosfolipídeos/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína , Prurido/metabolismo , Canal de Cátion TRPA1/efeitos dos fármacos , Canal de Cátion TRPA1/metabolismo , Tiazóis/farmacologiaRESUMO
K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2.
Assuntos
Hiperinsulinismo Congênito/genética , Diabetes Mellitus/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Trifosfato de Adenosina/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Linhagem , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Estrutura Terciária de ProteínaRESUMO
Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K+ (KATP) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of KATP channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of KATP channels, closed KATP channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of KATP channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.