Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1345473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343535

RESUMO

AMG 256 is a bi-specific, heteroimmunoglobulin molecule with an anti-PD-1 antibody domain and a single IL-21 mutein domain on the C-terminus. Nonclinical studies in cynomolgus monkeys revealed that AMG 256 administration led to the development of immunogenicity-mediated responses and indicated that the IL-21 mutein domain of AMG 256 could enhance the anti-drug antibody response directed toward the monoclonal antibody domain. Anti-AMG 256 IgE were also observed in cynomolgus monkeys. A first-in-human (FIH) study in patients with advanced solid tumors was designed with these risks in mind. AMG 256 elicited ADA in 28 of 33 subjects (84.8%). However, ADA responses were only robust and exposure-impacting at the 2 lowest doses. At mid to high doses, ADA responses remained low magnitude and all subjects maintained exposure, despite most subjects developing ADA. Limited drug-specific IgE were also observed during the FIH study. ADA responses were not associated with any type of adverse event. The AMG 256 program represents a unique case where nonclinical studies informed on the risk of immunogenicity in humans, due to the IL-21-driven nature of the response.


Assuntos
Anticorpos Monoclonais , Interleucinas , Receptor de Morte Celular Programada 1 , Animais , Humanos , Macaca fascicularis , Imunoglobulina E
2.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271166

RESUMO

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Complexo CD3/química , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Receptor ErbB-2/química
3.
Invest Ophthalmol Vis Sci ; 60(13): 4097-4108, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31574535

RESUMO

Purpose: Investigate a significant, dose-related increase in IOP, leading to glaucomatous damage to the neuroretina and optic nerve following intravitreal (ITV) administration of a bispecific F(ab')2 [anti-VEGF/Angiopoietins [ANGPT]F(ab')2] molecule in adult monkeys. Methods: ITV ocular tolerability and investigation of anti-VEGF/ANGPT F(ab')2 (blocking both ANGPT1 and ANGPT2) was done in monkeys; mechanistic studies were done in neonatal mice. Results: Following the second ITV dose of anti-VEGF/ANGPT F(ab')2, all 1.5- and 4-mg/eye treated monkeys developed elevated IOP, which eventually was associated with optic disc cupping and thinning of the neuroretinal rim. Histopathologic examination showed nonreversible axonal degeneration in the optic nerves of animals administered 1.5 mg/eye and higher that was considered secondary to high IOP. Anti-ANGPT Fab also caused elevated IOP in monkeys, but anti-VEGF Fab did not contribute to the IOP increase. In addition, an anti-ANGPT2-selective antibody did not change IOP. In mice simultaneous blockade of ANGPT1 and ANGPT2 impaired the expansion and formation of Schlemm's canal (SC) vessels, similar to genetic ablation of Angpt1/Angpt2 and their receptor TIE2. As previously reported, blocking ANGPT2 alone did not affect SC formation in mice. Conclusions: Dual inhibition of ANGPT1/ANGPT2, but not ANGPT2 alone, leads to increased IOP and glaucomatous damage in monkeys. This confirms a role for TIE2/ANGPT signaling in the control of IOP in adults, a finding initially identified in transgenic mice. Dual pharmacologic inhibition of ANGPT1/ANGPT2 may affect aqueous drainage and homeostasis in adult monkeys and may be useful in developing novel models of glaucoma.


Assuntos
Angiopoietina-1/antagonistas & inibidores , Angiopoietina-2/antagonistas & inibidores , Humor Aquoso/metabolismo , Glaucoma/fisiopatologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Angiopoietina-1/fisiologia , Angiopoietina-2/fisiologia , Animais , Anticorpos/farmacologia , Pressão Intraocular , Primatas , Fator A de Crescimento do Endotélio Vascular/fisiologia
4.
Clin Cancer Res ; 25(13): 3921-3933, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30918018

RESUMO

PURPOSE: Despite advances in the treatment of multiple myeloma, new therapies are needed to induce more profound clinical responses. T-cell-redirected lysis triggered by bispecific antibodies recruiting T cells to cancer cells is a clinically validated mechanism of action against hematologic malignancies and CD38 is a tumor-associated antigen with near-universal expression in multiple myeloma. Thus, an anti-CD38/CD3 bispecific T-cell-recruiting antibody has the potential to be an effective new therapeutic for multiple myeloma. EXPERIMENTAL DESIGN: Anti-CD38/CD3 XmAb T-cell-recruiting antibodies with different affinities for CD38 and CD3 were assessed in vitro and in vivo for their redirected T-cell lysis activity against cancer cell lines, their lower levels of cytokine release, and their potency in the presence of high levels of soluble CD38. Select candidates were further tested in cynomolgus monkeys for B-cell depletion and cytokine release properties. RESULTS: AMG 424 was selected on the basis of its ability to kill cancer cells expressing high and low levels of CD38 in vitro and trigger T-cell proliferation, but with attenuated cytokine release. In vivo, AMG 424 induces tumor growth inhibition in bone marrow-invasive mouse cancer models and the depletion of peripheral B cells in cynomolgus monkeys, without triggering excessive cytokine release. The activity of AMG 424 against normal immune cells expressing CD38 is also presented. CONCLUSIONS: These findings support the clinical development of AMG 424, an affinity-optimized T-cell-recruiting antibody with the potential to elicit significant clinical activity in patients with multiple myeloma.


Assuntos
Anticorpos Biespecíficos/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/uso terapêutico , Citocinas/biossíntese , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/efeitos adversos , Afinidade de Anticorpos/imunologia , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Complexo CD3/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Ativação Linfocitária/imunologia , Macaca fascicularis , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Pharm Res ; 35(11): 222, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30280329

RESUMO

PURPOSE: Biotherapeutics can be susceptible to oxidation during manufacturing and storage. Free L-methionine is known to protect methionine residues in proteins from oxidation. Similarly, free tryptophan and other indole derivatives have been shown to protect tryptophan residues from oxidation. N-acetyl-DL-tryptophan was previously identified as a potentially superior antioxidant to tryptophan as it has a lower oxidation potential and produces less peroxide upon light exposure. This study sought to confirm the antioxidant efficacy and safety of N-acetyl-DL-tryptophan and L-methionine as formulation components for biotherapeutic drugs. METHODS: Antibodies were subjected to AAPH and light exposure in the presence of N-acetyl-DL-tryptophan and L-methionine. Oxidation in relevant CDR and Fc residues was quantified by peptide map. In silico, in vitro, and in vivo studies were performed to evaluate the safety of N-acetyl-DL-tryptophan and L-methionine. RESULTS: Peptide mapping demonstrated that N-acetyl-DL-tryptophan was effective at protecting tryptophans from AAPH stress, and that the combination of N-acetyl-DL-tryptophan and L-methionine protected both tryptophan and methionine from AAPH stress. The safety assessment suggested an acceptable safety profile for both excipients. CONCLUSIONS: N-acetyl-tryptophan and L-methionine effectively reduce the oxidation of susceptible tryptophan and methionine residues in antibodies and are safe for use in parenteral biotherapeutic formulations.


Assuntos
Anticorpos Monoclonais/química , Antioxidantes/química , Metionina/química , Triptofano/análogos & derivados , Amidinas/química , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/toxicidade , Antioxidantes/administração & dosagem , Antioxidantes/toxicidade , Produtos Biológicos , Linhagem Celular Tumoral , Simulação por Computador , Composição de Medicamentos , Excipientes/química , Feminino , Humanos , Macaca fascicularis , Masculino , Metionina/administração & dosagem , Metionina/toxicidade , Testes de Mutagenicidade , Oxirredução , Conformação Proteica , Estabilidade Proteica , Coelhos , Triptofano/administração & dosagem , Triptofano/química , Triptofano/toxicidade , Raios Ultravioleta
6.
Cell Death Dis ; 7(8): e2338, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27512959

RESUMO

Apo2L/TRAIL is a member of the tumor necrosis factor superfamily and an important inducer of apoptosis. Recombinant human (rhu) Apo2L/TRAIL has been attractive as a potential cancer therapeutic because many types of tumor cells are sensitive to its apoptosis-inducing effects. Nonclinical toxicology studies were conducted to evaluate the safety of rhuApo2L/TRAIL for possible use in humans. The cynomolgus monkey was chosen for this safety assessment based on high protein sequence homology between human and cynomolgus Apo2L/TRAIL and comparable expression of their receptors. Although hepatotoxicity was observed in repeat-dose monkey studies with rhuApo2L/TRAIL, all animals that displayed hepatotoxicity had developed antitherapeutic antibodies (ATAs). The cynomolgus ATAs augmented the cytotoxicity of rhuApo2L/TRAIL but not of its cynomolgus counterpart. Of note, human and cynomolgus Apo2L/TRAIL differ by four amino acids, three of which are surface-exposed. In vivo studies comparing human and cynomolgus Apo2L/TRAIL supported the conclusion that these distinct amino acids served as epitopes for cross-species ATAs, capable of crosslinking rhuApo2L/TRAIL and thus triggering hepatocyte apoptosis. We describe a hapten-independent mechanism of immune-mediated, drug-related hepatotoxicity - in this case - associated with the administration of a human recombinant protein in monkeys. The elucidation of this mechanism enabled successful transition of rhuApo2L/TRAIL into human clinical trials.


Assuntos
Anticorpos/toxicidade , Anticorpos/uso terapêutico , Proteínas Recombinantes/toxicidade , Proteínas Recombinantes/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/toxicidade , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Células Jurkat , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Macaca fascicularis , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA