Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(15): 10501-10511, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32673482

RESUMO

The metal-organic framework [Fe(ta)2] (Hta = 1H-1,2,3-triazole) containing Fe(II) ions and 1,2,3-triazolate ligands shows a reversible phase transition while retaining the cubic crystal symmetry and space group Fd3m (no. 227). The phase transition between room temperature (RT-[Fe(ta)2]; a = 16.6315(2) Å, V = 4600.39(8) Å3) and high temperature (HT-[Fe(ta)2]; a = 17.7566(4) Å, V = 5598.6(1) Å3) phases occurs at a temperature above 290 °C, whereas the phase transition between HT- and RT-[Fe(ta)2] starts at a temperature below 210 °C. Both [Fe(ta)2] polymorphs have identical bond topologies, but they differ by a large increase of the unit cell's volume of 22% for HT-[Fe(ta)2]. The compounds are characterized by powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analyses. Additionally, Mössbauer spectroscopy, magnetic studies, and the electronic structure of both phases are discussed in detail with respect to the spin-crossover transition from the low-spin (RT-[Fe(ta)2]) to the high-spin phase (HT-[Fe(ta)2]).

2.
Beilstein J Nanotechnol ; 8: 108-122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144570

RESUMO

The aim of this research is to study the role of nanocrystalline TiO2/SnO2 n-n heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing experiments have been performed for H2 concentrations of 1-3000 ppm at 200-400 °C. The nanomaterials are well-crystallized, anatase TiO2, rutile TiO2 and cassiterite SnO2 polymorphic forms are present depending on the chemical composition of the powders. The crystallite sizes from XRD peak analysis are within the range of 3-27 nm. Tin exhibits only the oxidation state 4+. The H2 detection threshold for the studied TiO2/SnO2 heterostructures is lower than 1 ppm especially in the case of SnO2-rich samples. The recovery time of SnO2-based heterostructures, despite their large responses over the whole measuring range, is much longer than that of TiO2-rich samples at higher H2 flows. TiO2/SnO2 heterostructures can be intentionally modified for the improved H2 detection within both the small (1-50 ppm) and the large (50-3000 ppm) concentration range. The temperature Tmax at which the semiconducting behavior begins to prevail upon water desorption/oxygen adsorption depends on the TiO2/SnO2 composition. The electrical resistance of sensing materials exhibits a power-law dependence on the H2 partial pressure. This allows us to draw a conclusion about the first step in the gas sensing mechanism related to the adsorption of oxygen ions at the surface of nanomaterials.

3.
Phys Chem Chem Phys ; 18(36): 25221-25229, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711457

RESUMO

The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH3), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mössbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing" with the atomic order in iron oxide nanocrystals.

4.
J Nanopart Res ; 13(12): 7167-7176, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22207821

RESUMO

We present a novel and facile method enabling synthesis of iron oxide nanoparticles, which are composed mainly of maghemite according to X-ray diffraction (XRD) and Mössbauer spectroscopy studies. The proposed process is realized by anodic iron polarization in deaerated LiCl solutions containing both water and ethanol. Water seems to play an important role in the synthesis. Morphology of the product was studied by means of transmission electron microscopy and XRD. In the solution containing almost 100% of water a black suspension of round shaped maghemite nanoparticles of 20-40 nm size is obtained. Regulating water concentration allows to control nanoparticle size, which is reduced to 4-6 nm for 5% of water with a possibility to reach intermediate sizes. For 3% or lower water concentration nanoparticles are of a needle-like shape and form a reddish suspension. In this case phase determination is problematic due to a small particle size with the thickness of roughly 3 nm. However, XRD studies indicate the presence of ferrihydrite. Coercivities of the materials are similar to those reported for nanoparticle magnetite powders, whereas the saturation magnetization values are considerably smaller.

5.
Dalton Trans ; (37): 7771-7, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19759952

RESUMO

We have synthesized the octacyanoniobate-based cyano-bridged 3D ferromagnet {[Fe(II)(H(2)O)(2)](2)[Nb(IV)(CN)(8)].4H(2)O}(n) and characterized structurally, spectroscopically (XANES/EXAFS, IR, UV-Vis, Resonance Raman, (57)Fe Mössbauer spectroscopy) and magnetically. crystallizes in the tetragonal system, space group I4/m, a = 11.989(5) A, c = 13.237(5) A, V = 1902.6(13) A(3). 3D coordination architecture comprises two types of Nb(IV)-C-N-Fe(II)(HS) (HS = high spin) linkages with Fe-N-C angles of 154.5 degrees and 167.5 degrees . The XANES/EXAFS spectra at Fe:K and Nb:K lines confirm the presence of Nb(IV)-C-N-Fe(II) linkages. Magnetic measurements reveal ferromagnetic ordering below T(c) = 43 K with some non-collinearity of Nb(IV) (S = 1/2) and Fe(II) (S = 2) magnetic moments. The molecular field model simulation reproduces well the M(T) curve and T(c) value with one average exchange coupling constant J(FeNb) = + 8.1 cm(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA