Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Biotechnol ; 35(1): 2391520, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39222080

RESUMO

MicroRNAs (miRNAs) were identified to be involved in various biological functions by regulating the degradation or suppressing the translation of their downstream target genes. Recent studies have identified miR-29a play a key role in functions of mammal cell differentiation, proliferation, apoptosis, and signal transduction. However, the underlying functions for miR-29a in jejunal epithelial cells biological function still to be investigated. In order to explore the yak jejunal epithelial cells proliferation and barrier dysfunction with over expression of miR-29a gene, three 0-day-old Pamir male yaks were randomly selected and slaughtered in present study, and the jejunal epithelial cells were isolated and cultured to determine yak jejunal epithelial cells proliferation and protein composition on differential expression of miR-29a gene in Pamir plateau. Here, we demonstrated that the overexpression of miR-29a gene could inhibit the proliferation of Pamir yaks jejunum epithelial cells, and contribute to the apoptosis of Pamir yaks jejunal epithelial cells with some extent. A total of 133 differentially expressed proteins were identified in different expression of miR-29a groups by label-free Mass Spectrometry (MS), which could be concluded to two predominant themes: cell proliferation and inflammatory response. Interestingly, GPR41, as a bridge protein, was contacted two predominant themes to involved in Pamir Yaks jejunal mechanical barrier PPI network, and the target proteins displayed strong mutual interactions in the complex PPI network. Overall, our study suggested that the over-expression miR-29a inhibited the jejunal epithelial cells proliferation and the expressions of specific proteins, which damaged jejunal barrier function to slow down the intestine structure and function advanced mature development during young livestock period for influence the enhanced performance of production efficiency.


Assuntos
Apoptose , Proliferação de Células , Células Epiteliais , Jejuno , MicroRNAs , Animais , Bovinos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/fisiologia , Células Epiteliais/metabolismo , Apoptose/genética , Apoptose/fisiologia , Jejuno/citologia , Jejuno/metabolismo , Proliferação de Células/genética , Masculino
2.
Nat Commun ; 15(1): 8090, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284833

RESUMO

The engineered TadA variants used in cytosine base editors (CBEs) present distinctive advantages, including a smaller size and fewer off-target effects compared to cytosine base editors that rely on natural deaminases. However, the current TadA variants demonstrate a preference for base editing in DNA with specific motif sequences and possess dual deaminase activity, acting on both cytosine and adenosine in adjacent positions, limiting their application scope. To address these issues, we employ TadA orthologs screening and multi sequence alignment (MSA)-guided protein engineering techniques to create a highly effective cytosine base editor (aTdCBE) without motif and adenosine deaminase activity limitations. Notably, the delivery of aTdCBE to a humanized mouse model of Duchenne muscular dystrophy (DMD) mice achieves robust exon 55 skipping and restoration of dystrophin expression. Our advancement in engineering TadA ortholog for cytosine editing enriches the base editing toolkits for gene-editing therapy and other potential applications.


Assuntos
Adenosina , Citosina , Edição de Genes , Distrofia Muscular de Duchenne , Citosina/metabolismo , Animais , Edição de Genes/métodos , Adenosina/metabolismo , Camundongos , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Engenharia de Proteínas , Distrofina/genética , Distrofina/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Modelos Animais de Doenças , Éxons/genética , Células HEK293 , Sistemas CRISPR-Cas , Proteínas de Escherichia coli
3.
J Adv Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942381

RESUMO

INTRODUCTION: The Prime Editing (PE) system is a precise and versatile genome editing tool with great potential in plant breeding and plant synthetic biology. However, low PE efficiency severely restricts its application, especially in dicots. PE can introduce small tags to trace target protein or cis-element to regulate gene transcription which is an expertise superior to other gene editing tools. Owing to low efficiency, PE adaption in stably transformed Arabidopsis is lacking. OBJECTIVES: This study aimed to investigate the issue of low PE efficiency in dicots and develop systematic solutions to improve it. Currently, PE in dicots is undetectable and inconsistent, and this study seeks to address it. Split PE into several parts showed better performance in some target sites in mammal cells. We plan to discover the optimal split PE combination in dicot. METHODS: We conducted large-scale transformation experiments in dicot model plants Arabidopsis thaliana (At) and Nicotiana benthamiana (Nb) by Agrobacterium-mediated transformation with deep amplicon sequencing (0.2-0.5 million clean total reads). RESULTS: The editing efficiency decreased upon using a fused reverse transcriptase (RT) or an extended pegRNA separately and further decreased dramatically when these were used together. With the help of the pol II strategy to express PE gRNA (pegRNA), we named the most effective split PE combination as a multi-modular assembled prime editing system (mPE). mPE exhibited improved precise editing efficiency on most gene sites with various editing types, ranging from 1.3-fold to 1288.5-fold and achieved PE on some sites that could not be edited by original PE2. Especially, mPE showed superiority for multi-base insertion with an average improvement of 197.9-fold. CONCLUSION: The original PE architecture strongly inhibited the cleavage activity of Cas9. Split PE improved PE efficiency extensively and was in favor of introducing small insertions in dicot plants, indicating that different PE variants might have their own expertise.

4.
Mol Ther Nucleic Acids ; 33: 750-761, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621413

RESUMO

Mutations in Rhodopsin (RHO) gene commonly cause autosomal dominant retinitis pigmentosa (adRP) without effective therapeutic treatment so far. Compared with genomic DNA-targeting CRISPR-Cas9 system, Cas13 edits RNA for therapeutic applications, avoiding the risk of causing permanent changes in the genome. In particular, a compact and high-fidelity Cas13X (hfCas13X) recently has been developed to degrade targeted RNA with minimal collateral effects and could also be packaged in a single adeno-associated virus for efficient in vivo delivery. In this study, we engineered single-guide RNA for hfCas13X to specifically knock down human mutant Rhodopsin transcripts RHO-P23H with minimal effect on wild-type transcripts. Moreover, treatment with hfCas13X alleviated the adRP progression in both RHO-P23H overexpression-induced and humanized hRHOP23H/WT mouse models. Our study indicates the potential of hfCas13X in treating adRP caused by RHO mutations and other genetic diseases.

5.
Cell ; 186(15): 3182-3195.e14, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379837

RESUMO

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.


Assuntos
Edição de Genes , Proteínas , Proteínas/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA , Sistemas CRISPR-Cas , Citosina/metabolismo
6.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512423

RESUMO

Approximately 10% of monogenic diseases are caused by nonsense point mutations that generate premature termination codons (PTCs), resulting in a truncated protein and nonsense-mediated decay of the mutant mRNAs. Here, we demonstrate a mini-dCas13X-mediated RNA adenine base editing (mxABE) strategy to treat nonsense mutation-related monogenic diseases via A-to-G editing in a genetically humanized mouse model of Duchenne muscular dystrophy (DMD). Initially, we identified a nonsense point mutation (c.4174C>T, p.Gln1392*) in the DMD gene of a patient and validated its pathogenicity in humanized mice. In this model, mxABE packaged in a single adeno-associated virus (AAV) reached A-to-G editing rates up to 84% in vivo, at least 20-fold greater than rates reported in previous studies using other RNA editing modalities. Furthermore, mxABE restored robust expression of dystrophin protein to over 50% of WT levels by enabling PTC read-through in multiple muscle tissues. Importantly, systemic delivery of mxABE by AAV also rescued dystrophin expression to averages of 37%, 6%, and 54% of WT levels in the diaphragm, tibialis anterior, and heart muscle, respectively, as well as rescued muscle function. Our data strongly suggest that mxABE-based strategies may be a viable new treatment modality for DMD and other monogenic diseases.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Distrofina/genética , Edição de Genes/métodos , Terapia Genética/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Edição de RNA , Humanos
7.
Sci Rep ; 12(1): 22410, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575359

RESUMO

Reprogramming Müller glia (MG) into functional cells is considered a promising therapeutic strategy to treat ocular diseases and vision loss. However, current AAV-based system for MG-tracing was reported to have high leakage in recent studies. Here, we focused on reducing the leakage of AAV-based labeling systems and found that different AAV serotypes showed a range of efficiency and specificity in labeling MG, leading us to optimize a human GFAP-Cre reporter system packaged in the AAV9 serotype with the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) removed. The leakage ratio of the AAV9-hGFAP-Cre-ΔWPRE decreased by an approximate 40-fold compared with the AAV9-hGFAP-Cre-WPRE labeling system. In addition, we validated the specificity of the AAV-ΔWPRE system for tracing MG reprogramming under Ptbp1-suppression and observed strict non-MG-conversion, similar to previous studies using genetic lineage tracking mouse models. Thus, the AAV9-hGFAP-Cre-ΔWPRE system showed high efficiency and specificity for MG labeling, providing a promising tool for tracing cell fate in vivo.


Assuntos
Vetores Genéticos , Neuroglia , Camundongos , Animais , Humanos , Vetores Genéticos/genética , Elementos Reguladores de Transcrição , Sorogrupo , Dependovirus/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas
8.
Mol Ther ; 30(1): 105-118, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34174443

RESUMO

Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.


Assuntos
Edição de Genes , Perda Auditiva , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Audição , Perda Auditiva/genética , Perda Auditiva/terapia , Humanos , Camundongos , RNA Guia de Cinetoplastídeos
9.
EMBO J ; 39(22): e104741, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33058229

RESUMO

Programmable RNA cytidine deamination has recently been achieved using a bifunctional editor (RESCUE-S) capable of deaminating both adenine and cysteine. Here, we report the development of "CURE", the first cytidine-specific C-to-U RNA Editor. CURE comprises the cytidine deaminase enzyme APOBEC3A fused to dCas13 and acts in conjunction with unconventional guide RNAs (gRNAs) designed to induce loops at the target sites. Importantly, CURE does not deaminate adenosine, enabling the high-specificity versions of CURE to create fewer missense mutations than RESCUE-S at the off-targets transcriptome-wide. The two editing approaches exhibit overlapping editing motif preferences, with CURE and RESCUE-S being uniquely able to edit UCC and AC motifs, respectively, while they outperform each other at different subsets of the UC targets. Finally, a nuclear-localized version of CURE, but not that of RESCUE-S, can efficiently edit nuclear RNAs. Thus, CURE and RESCUE are distinct in design and complementary in utility.


Assuntos
Citidina Desaminase/genética , Proteínas/genética , Edição de RNA , Núcleo Celular/metabolismo , Células HEK293 , Humanos , RNA/química , RNA/metabolismo , RNA Guia de Cinetoplastídeos , Transcriptoma
10.
Nature ; 571(7764): 275-278, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181567

RESUMO

Recently developed DNA base editing methods enable the direct generation of desired point mutations in genomic DNA without generating any double-strand breaks1-3, but the issue of off-target edits has limited the application of these methods. Although several previous studies have evaluated off-target mutations in genomic DNA4-8, it is now clear that the deaminases that are integral to commonly used DNA base editors often bind to RNA9-13. For example, the cytosine deaminase APOBEC1-which is used in cytosine base editors (CBEs)-targets both DNA and RNA12, and the adenine deaminase TadA-which is used in adenine base editors (ABEs)-induces site-specific inosine formation on RNA9,11. However, any potential RNA mutations caused by DNA base editors have not been evaluated. Adeno-associated viruses are the most common delivery system for gene therapies that involve DNA editing; these viruses can sustain long-term gene expression in vivo, so the extent of potential RNA mutations induced by DNA base editors is of great concern14-16. Here we quantitatively evaluated RNA single nucleotide variations (SNVs) that were induced by CBEs or ABEs. Both the cytosine base editor BE3 and the adenine base editor ABE7.10 generated tens of thousands of off-target RNA SNVs. Subsequently, by engineering deaminases, we found that three CBE variants and one ABE variant showed a reduction in off-target RNA SNVs to the baseline while maintaining efficient DNA on-target activity. This study reveals a previously overlooked aspect of off-target effects in DNA editing and also demonstrates that such effects can be eliminated by engineering deaminases.


Assuntos
DNA/genética , Edição de Genes/métodos , Mutagênese , Mutação , Nucleosídeo Desaminases/genética , Engenharia de Proteínas , RNA/genética , Adenina/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Citosina/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Células HEK293 , Humanos , Nucleosídeo Desaminases/metabolismo , Especificidade por Substrato , Transfecção
11.
Genome Biol ; 18(1): 224, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29178945

RESUMO

BACKGROUND: The CRISPR/Cas9 system has become an efficient gene editing method for generating cells carrying precise gene mutations, including the rearrangement and deletion of chromosomal segments. However, whether an entire chromosome could be eliminated by this technology is still unknown. RESULTS: Here we demonstrate the use of the CRISPR/Cas9 system to eliminate targeted chromosomes. Using either multiple cleavages induced by a single-guide RNA (sgRNA) that targets multiple chromosome-specific sites or a cocktail of multiple sgRNAs, each targeting one specific site, we found that a sex chromosome could be selectively eliminated in cultured cells, embryos, and tissues in vivo. Furthermore, this approach was able to produce a targeted autosome loss in aneuploid mouse embryonic stem cells with an extra human chromosome and human induced pluripotent stem cells with trisomy 21, as well as cancer cells. CONCLUSIONS: CRISPR/Cas9-mediated targeted chromosome elimination offers a new approach to develop animal models with chromosome deletions, and a potential therapeutic strategy for human aneuploidy diseases involving additional chromosomes.


Assuntos
Sistemas CRISPR-Cas , Deleção Cromossômica , Marcação de Genes , Animais , Modelos Animais de Doenças , Células-Tronco Embrionárias , Feminino , Edição de Genes , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Camundongos , Microinjeções , Fenótipo , RNA Guia de Cinetoplastídeos , Síndrome de Turner/genética , Cromossomo Y
12.
Cell Res ; 27(6): 815-829, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429771

RESUMO

Studying the early function of essential genes is an important and challenging problem in developmental biology. Here, we established a method for rapidly inducing CRISPR-Cas9-mediated mutations in one blastomere of two-cell stage embryos, termed 2-cell embryo-CRISPR-Cas9 injection (2CC), to study the in vivo function of essential (or unknown) genes in founder chimeric mice. By injecting both Cre mRNA and CRISPR-Cas9 targeting the gene of interest into fluorescent reporter mice, the 2CC method can trace both wild-type and mutant cells at different developmental stages, offering internal control for phenotypic analyses of mutant cells. Using this method, we identified novel functions of the essential gene Tet3 in regulating excitatory and inhibitory synaptic transmission in the developing mouse cerebral cortex. By generating chimeric mutant mice, the 2CC method allows for the rapid screening of gene function in multiple tissues and cell types in founder chimeric mice, significantly expanding the current armamentarium of genetic tools.


Assuntos
Blastômeros/metabolismo , Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Embrião de Mamíferos/metabolismo , Engenharia Genética/métodos , Masculino , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
13.
Mol Immunol ; 76: 1-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27327127

RESUMO

Melanoma differentiation-associated gene 5 (MDA5) is a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) family and plays a pivotal role in the anti-viral innate immune response. As RIG-I is absent in chickens, MDA5 is hypothesized to be important in detecting viral nucleic acids in the cytoplasm. However, the molecular mechanism of the regulation of chicken MDA5 (chMDA5) expression has yet to be fully elucidated. With this in mind, a ∼2.5kb chMDA5 gene promoter region was examined and PCR amplified to assess its role in immune response. A chMDA5 promoter reporter plasmid (piggybac-MDA5-DsRed) was constructed and transfected into DF-1 cells to establish a Piggybac-MDA5-DsRed cell line. The MDA5 promoter activity was extremely low under basal condition, but was dramatically increased when cells were stimulated with polyinosinic: polycytidylic acid (poly I:C), interferon beta (IFN-ß) or Infectious Bursal Disease Virus (IBDV). The DsRed mRNA level represented the promoter activity and was remarkably increased, which matched the expression of endogenous MDA5. However, Infectious Bronchitis Virus (IBV) and Newcastle disease virus (NDV) failed to increase the MDA5 promoter activity and the expression of endogenous MDA5. The results indicated that the promoter and the Piggybac-MDA5-DsRed cell line could be utilized to determine whether a ligand regulates MDA5 expression. For the first time, this study provides a tool for testing chMDA5 expression and regulation.


Assuntos
Galinhas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/imunologia , Helicase IFIH1 Induzida por Interferon/genética , Regiões Promotoras Genéticas/genética , Animais , Galinhas/genética , Citometria de Fluxo , Vírus da Doença Infecciosa da Bursa/imunologia , Helicase IFIH1 Induzida por Interferon/biossíntese , Helicase IFIH1 Induzida por Interferon/imunologia , Poli I-C/imunologia , Reação em Cadeia da Polimerase em Tempo Real
14.
Mol Reprod Dev ; 82(10): 747-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26153379

RESUMO

The ubiquitin-proteasome pathway, involved in genetic recombination and sex-chromosome silencing during meiosis, plays critical roles in the specification of germ-line stem cells and the differentiation of gametes from gonocytes. Zygote-specific proteasome assembly chaperone (ZPAC) is expressed in the early mouse embryo, where it is important for progression of the mouse maternal-to-zygotic transition. The role of ZPAC during spermatogenesis in the adult gonads, however, remains unknown. In this study, rapid amplification of cDNA ends was used to determine the Zpac cDNA sequence, a 1584-bp transcript that includes a putative 1122-bp open reading frame coding for a 373 amino acid protein. Western blot and immunohistochemistry revealed that ZPAC was specifically expressed in gonads. To further dissect the function of ZPAC during spermatogenesis, we employed PiggyBac-based RNA interference vectors for transgenesis combined with cell transplantation to deplete Zpac during spermatogenesis. This RNAi-mediate depletion in Zpac expression disrupted normal spermatogenesis from spermatogonial stem cells. Two independent yeast two-hybrid screens further revealed an interaction between ZPAC and SYCE1. Together, these data suggest that ZPAC is required for normal spermatogenesis in mice.


Assuntos
Chaperonas Moleculares/fisiologia , Proteínas Nucleares/fisiologia , Espermatogênese , Animais , Linhagem Celular , DNA Complementar , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Interferência de RNA , Espermatogênese/genética , Técnicas do Sistema de Duplo-Híbrido
15.
Sci Rep ; 4: 5936, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25088917

RESUMO

C-kit positive (c-kit(+)) cells are usual tissue-specific stem cells. However, in postnatal testis, undifferentiated spermatogonial stem cells (SSCs) are c-kit negative (c-kit(-)) and activation of c-kit represents the start of SSC differentiation, leaving an intriguing question whether other c-kit(+) cells exist and participate in the postnatal development of testis. To this end, a feasible system for testicular reconstitution, in which a specific type of cells can be manipulated, is needed. Here, we first establish de novo morphogenesis of testis by subcutaneous injection of testicular cells from neonatal testes into the backs of nude mice. We observe testicular tissue formation and spermatogenesis from all injected sites. Importantly, functional spermatids can be isolated from these testicular tissues. Using this system, we systemically analyze the roles of c-kit(+) cells in testicular reconstitution and identify a small population of cells (c-kit(+):CD140a(+):F4/80(+)), which express typical markers of macrophages, are critical for de novo morphogenesis of testis. Interestingly, we demonstrate that these cells are gradually replaced by peripheral blood cells of recipient mice during the morphogenesis of testis. Thus, we develop a system, which may mimic the complete developmental process of postnatal testis, for investigating the testicular development and spermatogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Espermátides/citologia , Espermátides/metabolismo , Espermatogônias/citologia , Testículo/citologia , Testículo/crescimento & desenvolvimento , Transplante Heterotópico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA