Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(2): e202315296, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009674

RESUMO

A significant challenge in creating supramolecular materials is that conjugating molecular functionalities to building blocks often results in dissociation or undesired morphological transformation of their assemblies. Here we present a facile strategy to preserve structurally labile peptide assemblies after molecular modification of the self-assembling peptides. Sheet-forming peptides are designed to afford a staggered alignment with the segments bearing chemical modification sites protruding from the sheet surfaces. The staggered assembly allows for simultaneous separation of attached molecules from each other and from the underlying assembly motifs. Strikingly, using PEGs as the external molecules, PEG400 - and PEG700 -peptide conjugates directly self-associate into nanosheets with the PEG chains localized on the sheet surfaces. In contrast, the sheet formation based on in-register lateral packing of peptides does not recur upon the peptide PEGylation. This strategy allows for fabrication of densely modified assemblies with a variety of molecules, as demonstrated using biotin (hydrophobic molecule), c(RGDfK) (cyclic pentapeptide), and nucleic acid aptamer (negatively charged ssDNA). The staggered co-assembly also enables extended tunability of the amount/density of surface molecules, as exemplified by screening ligand-appended assemblies for cell targeting. This study paves the way for functionalization of historically challenging fragile assemblies while maintaining their overall morphology.


Assuntos
Ácidos Nucleicos , Peptídeos , Peptídeos/química
2.
Biomacromolecules ; 24(8): 3700-3715, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37478325

RESUMO

While solution micellization of ionic block copolymers (BCP) with randomly distributed ionization sites along the hydrophilic segments has been extensively studied, the roles of positionally controlled ionization sites along the BCP chains in their micellization and resulting micellar structure remain comparatively less understood. Herein, three amphoteric polypeptoid block copolymers carrying two oppositely charged ionizable sites, with one fixed at the hydrophobic terminus and the other varyingly positioned along the hydrophilic segment, have been synthesized by sequential ring-opening polymerization method. The presence of the ionizable site at the hydrophobic segment terminus is expected to promote polymer association toward equilibrium micellar structures in an aqueous solution. The concurrent presence of oppositely charged ionizable sites on the polymer chains allows the polymer association to be electrostatically modulated in a broad pH range (ca. 2-12). Micellization of the amphoteric polypeptoid BCP in dilute aqueous solution and the resulting micellar structure at different solution pHs was investigated by a combination of scattering and microscopic methods. Negative-stain transmission-electron microscopy (TEM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) analyses revealed the dominant presence of core-shell-type spherical micelles and occasional rod-like micelles with liquid crystalline (LC) domains in the micellar core. The micellar structures (e.g., aggregation number, radius of gyration, chain packing in the micelle) were found to be dependent on the solution pH and the position of the ionizable site along the chain. This study has highlighted the potential of controlling the position of ionizable sites along the BCP polymer to modulate the electrostatic and LC interactions, thus tailoring the micellar structure at different solution pH values in water.


Assuntos
Micelas , Polímeros , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
3.
Nano Lett ; 23(14): 6386-6392, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37399537

RESUMO

Nature regulates cellular interactions through the cell-surface molecules and plasma membranes. Despite advances in cell-surface engineering with diverse ligands and reactive groups, modulating cell-cell interactions through scaffolds of the cell-binding cues remains a challenging endeavor. Here, we assembled peptide nanofibrils on live cell surfaces to present the ligands that bind to the target cells. Surprisingly, with the same ligands, reducing the thermal stability of the nanofibrils promoted cellular interactions. Characterizations of the system revealed a thermally induced fibril disassembly and reassembly pathway that facilitated the complexation of the fibrils with the cells. Using the nanofibrils of varied stabilities, the cell-cell interaction was promoted to different extents with free-to-bound cell conversion ratios achieved at low (31%), medium (54%), and high (93%) levels. This study expands the toolbox to generate desired cell behaviors for applications in many areas and highlights the merits of thermally less stable nanoassemblies in designing functional materials.


Assuntos
Nanofibras , Nanofibras/química , Ligantes , Peptídeos/química
4.
Angew Chem Int Ed Engl ; 62(22): e202303684, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37015880

RESUMO

Advanced applications of biomacromolecular assemblies require a stringent degree of control over molecular arrangement, which is a challenge to current synthetic methods. Here we used a neighbor-controlled patterning strategy to build multicomponent peptide fibrils with an unprecedented capacity to manipulate local composition and peptide positions. Eight peptides were designed to have regulable nearest neighbors upon co-assembly, which, by simulation, afforded 412 different patterns within fibrils, with varied compositions and/or peptide positions. The fibrils with six prescribed patterns were experimentally constructed with high accuracy. The controlled patterning also applies to functionalities appended to the peptides, as exemplified by arranging carbohydrate ligands at nanoscale precision for protein recognition. This study offers a route to molecular editing of inner structures of peptide assemblies, prefiguring the uniqueness and richness of patterning-based material design.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Conformação Molecular
5.
Proc Natl Acad Sci U S A ; 119(20): e2121586119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533283

RESUMO

Phenol-soluble modulins (PSMs) are peptide-based virulence factors that play significant roles in the pathogenesis of staphylococcal strains in community-associated and hospital-associated infections. In addition to cytotoxicity, PSMs display the propensity to self-assemble into fibrillar species, which may be mediated through the formation of amphipathic conformations. Here, we analyze the self-assembly behavior of two PSMs, PSMα3 and PSMß2, which are derived from peptides expressed by methicillin-resistant Staphylococcus aureus (MRSA), a significant human pathogen. In both cases, we observed the formation of a mixture of self-assembled species including twisted filaments, helical ribbons, and nanotubes, which can reversibly interconvert in vitro. Cryo­electron microscopy structural analysis of three PSM nanotubes, two derived from PSMα3 and one from PSMß2, revealed that the assemblies displayed remarkably similar structures based on lateral association of cross-α amyloid protofilaments. The amphipathic helical conformations of PSMα3 and PSMß2 enforced a bilayer arrangement within the protofilaments that defined the structures of the respective PSMα3 and PSMß2 nanotubes. We demonstrate that, similar to amyloids based on cross-ß protofilaments, cross-α amyloids derived from these PSMs display polymorphism, not only in terms of the global morphology (e.g., twisted filament, helical ribbon, and nanotube) but also with respect to the number of protofilaments within a given peptide assembly. These results suggest that the folding landscape of PSM derivatives may be more complex than originally anticipated and that the assemblies are able to sample a wide range of supramolecular structural space.


Assuntos
Nanotubos , Staphylococcus aureus , Amiloide/química , Toxinas Bacterianas , Microscopia Crioeletrônica , Humanos , Peptídeos/química , Staphylococcus aureus/metabolismo
6.
Angew Chem Int Ed Engl ; 61(27): e202201895, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35415953

RESUMO

Despite recent progress, it remains challenging to program biomacromolecules to assemble into discrete nanostructures with pre-determined sizes and topologies. We report here a novel strategy to address this challenge. By using two orthogonal pairs of heterodimeric coiled coils as the building blocks, we constructed six discrete supramolecular assemblies, each composed of a prescribed number of coiled coil components. Within these assemblies, different coiled coils were connected via end-to-side covalent linkages strategically pre-installed between the non-complementary pairs. The overall topological features of two highly complex assemblies, a "barbell" and a "quadrilateral" form, were characterized experimentally and were in good agreement to the designs. This work expands the design paradigms for peptide-based discrete supramolecular assemblies and will provide a route for de novo fabrication of functional protein materials.


Assuntos
Nanoestruturas , Peptídeos , Fenômenos Biofísicos , Nanoestruturas/química , Peptídeos/química , Domínios Proteicos , Proteínas/química
7.
Commun Biol ; 4(1): 1374, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880419

RESUMO

Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.


Assuntos
Éxons , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Nucleares/genética , Peptídeos/metabolismo , Microscopia Crioeletrônica , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/ultraestrutura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura
8.
J Biol Chem ; 297(2): 100890, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197876

RESUMO

ß2-glycoprotein I (ß2GPI) is an abundant multidomain plasma protein that plays various roles in the clotting and complement cascades. It is also the main target of antiphospholipid antibodies (aPL) in the acquired coagulopathy known as antiphospholipid syndrome (APS). Previous studies have shown that ß2GPI adopts two interconvertible biochemical conformations, oxidized and reduced, depending on the integrity of the disulfide bonds. However, the precise contribution of the disulfide bonds to ß2GPI structure and function is unknown. Here, we substituted cysteine residues with serine to investigate how the disulfide bonds C32-C60 in domain I (DI) and C288-C326 in domain V (DV) regulate ß2GPI's structure and function. Results of our biophysical and biochemical studies support the hypothesis that the C32-C60 disulfide bond plays a structural role, whereas the disulfide bond C288-C326 is allosteric. We demonstrate that absence of the C288-C326 bond, unlike absence of the C32-C60 bond, diminishes membrane binding without affecting the thermodynamic stability and overall structure of the protein, which remains elongated in solution. We also document that, while absence of the C32-C60 bond directly impairs recognition of ß2GPI by pathogenic anti-DI antibodies, absence of the C288-C326 disulfide bond is sufficient to abolish complex formation in the presence of anionic phospholipids. We conclude that the disulfide bond C288-C326 operates as a molecular switch capable of regulating ß2GPI's physiological functions in a redox-dependent manner. We propose that in APS patients with anti-DI antibodies, selective rupture of the C288-C326 disulfide bond may be a valid strategy to lower the pathogenic potential of aPL.


Assuntos
Anticorpos Antifosfolipídeos/imunologia , Síndrome Antifosfolipídica/imunologia , Autoanticorpos/imunologia , Proteínas Recombinantes/metabolismo , beta 2-Glicoproteína I/metabolismo , Regulação Alostérica , Anticorpos Antifosfolipídeos/sangue , Síndrome Antifosfolipídica/patologia , Autoanticorpos/sangue , Linhagem Celular , Cristalografia por Raios X/métodos , Humanos , Oxirredução , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , beta 2-Glicoproteína I/química , beta 2-Glicoproteína I/imunologia , beta 2-Glicoproteína I/isolamento & purificação
9.
Nucleic Acids Res ; 49(10): 5925-5942, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33978756

RESUMO

HIV-1 reverse transcription initiates at the primer binding site (PBS) in the viral genomic RNA (gRNA). Although the structure of the PBS-segment undergoes substantial rearrangement upon tRNALys3 annealing, the proper folding of the PBS-segment during gRNA packaging is important as it ensures loading of beneficial host factors. DHX9/RNA helicase A (RHA) is recruited to gRNA to enhance the processivity of reverse transcriptase. Because the molecular details of the interactions have yet to be defined, we solved the solution structure of the PBS-segment preferentially bound by RHA. Evidence is provided that PBS-segment adopts a previously undefined adenosine-rich three-way junction structure encompassing the primer activation stem (PAS), tRNA-like element (TLE) and tRNA annealing arm. Disruption of the PBS-segment three-way junction structure diminished reverse transcription products and led to reduced viral infectivity. Because of the existence of the tRNA annealing arm, the TLE and PAS form a bent helical structure that undergoes shape-dependent recognition by RHA double-stranded RNA binding domain 1 (dsRBD1). Mutagenesis and phylogenetic analyses provide evidence for conservation of the PBS-segment three-way junction structure that is preferentially bound by RHA in support of efficient reverse transcription, the hallmark step of HIV-1 replication.


Assuntos
RNA Helicases DEAD-box/química , HIV-1/química , Proteínas de Neoplasias/química , RNA Viral/química , Transcrição Reversa/genética , Replicação Viral/genética , Regiões 5' não Traduzidas , Sítios de Ligação/genética , Linhagem Celular , HIV-1/genética , HIV-1/patogenicidade , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Filogenia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , RNA Viral/genética
10.
J Am Chem Soc ; 142(47): 19956-19968, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170675

RESUMO

The fabrication of dynamic, transformable biomaterials that respond to environmental cues represents a significant step forward in the development of synthetic materials that rival their highly functional, natural counterparts. Here, we describe the design and synthesis of crystalline supramolecular architectures from charge-complementary heteromeric pairs of collagen-mimetic peptides (CMPs). Under appropriate conditions, CMP pairs spontaneously assemble into either 1D ultraporous (pore diameter >100 nm) tubes or 2D bilayer nanosheets due to the structural asymmetry that arises from heteromeric self-association. Crystalline collagen tubes represent a heretofore unobserved morphology of this common biomaterial. In-depth structural characterization from a suite of biophysical methods, including TEM, AFM, high-resolution cryo-EM, and SAXS/WAXS measurements, reveals that the sheet and tube assemblies possess a similar underlying lattice structure. The experimental evidence suggests that the tubular structures are a consequence of the self-scrolling of incipient 2D layers of collagen triple helices and that the scrolling direction determines the formation of two distinct structural isoforms. Furthermore, we show that nanosheets and tubes can spontaneously interconvert through manipulation of the assembly pH and systematic adjustment of the CMP sequence. Altogether, we establish initial guidelines for the construction of dynamically responsive 1D and 2D assemblies that undergo a structurally programmed morphological transition.


Assuntos
Colágeno/química , Nanoestruturas/química , Peptídeos/química , Sequência de Aminoácidos , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Nanotubos/química , Porosidade
12.
Proc Natl Acad Sci U S A ; 116(29): 14456-14464, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31262809

RESUMO

Tandem repeat proteins exhibit native designability and represent potentially useful scaffolds for the construction of synthetic biomimetic assemblies. We have designed 2 synthetic peptides, HEAT_R1 and LRV_M3Δ1, based on the consensus sequences of single repeats of thermophilic HEAT (PBS_HEAT) and Leucine-Rich Variant (LRV) structural motifs, respectively. Self-assembly of the peptides afforded high-aspect ratio helical nanotubes. Cryo-electron microscopy with direct electron detection was employed to analyze the structures of the solvated filaments. The 3D reconstructions from the cryo-EM maps led to atomic models for the HEAT_R1 and LRV_M3Δ1 filaments at resolutions of 6.0 and 4.4 Å, respectively. Surprisingly, despite sequence similarity at the lateral packing interface, HEAT_R1 and LRV_M3Δ1 filaments adopt the opposite helical hand and differ significantly in helical geometry, while retaining a local conformation similar to previously characterized repeat proteins of the same class. The differences in the 2 filaments could be rationalized on the basis of differences in cohesive interactions at the lateral and axial interfaces. These structural data reinforce previous observations regarding the structural plasticity of helical protein assemblies and the need for high-resolution structural analysis. Despite these observations, the native designability of tandem repeat proteins offers the opportunity to engineer novel helical nanotubes. Moreover, the resultant nanotubes have independently addressable and chemically distinguishable interior and exterior surfaces that would facilitate applications in selective recognition, transport, and release.


Assuntos
Sequências Hélice-Alça-Hélice , Nanotubos/ultraestrutura , Peptídeos/química , Microscopia Crioeletrônica , Imageamento Tridimensional , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Sequências de Repetição em Tandem
13.
J Am Chem Soc ; 139(40): 14025-14028, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949522

RESUMO

We describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP++ and sCP++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of ∼10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoring the size of DNA nanostructures. This study presents an attractive strategy to create hybrid biomolecular assemblies from peptide- and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Colágeno/química , DNA/química , Nanoestruturas/química , Peptídeos/química , Nanoestruturas/ultraestrutura , Nanotecnologia
14.
Nat Struct Mol Biol ; 24(9): 717-725, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28783150

RESUMO

Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases important for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of known 3D structures for these enzymes, their mechanism of action has remained poorly understood. Here we report the X-ray crystal structure of the monomeric AAA katanin module from Caenorhabditis elegans and cryo-EM reconstructions of the hexamer in two conformations. The structures reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to microtubule-severing enzymes and critical for their function. The reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes interprotomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Caenorhabditis elegans/enzimologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Katanina , Modelos Moleculares , Ligação Proteica , Conformação Proteica
15.
ACS Cent Sci ; 2(11): 820-824, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27924310

RESUMO

An important advance in fluid surface control was the amphiphilic surfactant composed of coupled molecular structures (i.e., hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e., hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water while simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.

16.
J Am Chem Soc ; 138(50): 16274-16282, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27936625

RESUMO

Sequence-specific peptides have been demonstrated to self-assemble into structurally defined nanoscale objects including nanofibers, nanotubes, and nanosheets. The latter structures display significant promise for the construction of hybrid materials for functional devices due to their extended planar geometry. Realization of this objective necessitates the ability to control the structural features of the resultant assemblies through the peptide sequence. The design of a amphiphilic peptide, 3FD-IL, is described that comprises two repeats of a canonical 18 amino acid sequence associated with straight α-helical structures. Peptide 3FD-IL displays 3-fold screw symmetry in a helical conformation and self-assembles into nanosheets based on hexagonal packing of helices. Biophysical evidence from TEM, cryo-TEM, SAXS, AFM, and STEM measurements on the 3FD-IL nanosheets support a structural model based on a honeycomb lattice, in which the length of the peptide determines the thickness of the nanosheet and the packing of helices defines the presence of nanoscale channels that permeate the sheet. The honeycomb structure can be rationalized on the basis of geometrical packing frustration in which the channels occupy defect sites that define a periodic superlattice. The resultant 2D materials may have potential as materials for nanoscale transport and controlled release applications.


Assuntos
Nanoporos , Peptídeos/química , Modelos Moleculares , Conformação Proteica em alfa-Hélice
17.
Nano Lett ; 16(4): 2663-73, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27022761

RESUMO

In contrast to the stable cycle performance of space confined Se-based cathodes for lithium batteries in carbonate-based electrolytes, their common capacity fading in ether-based electrolytes has been paid less attention and not yet well-addressed so far. In this work, the lithiation/delithiation of amorphous Se2S5 confined in micro/mesoporous carbon (Se2S5/MPC) cathode was investigated by in situ X-ray near edge absorption spectroscopy (XANES) and theoretical calculations. The Se2S5/MPC composite was synthesized by a modified vaporization-condensation method to ensure a good encapsulation of Se2S5 into the pores of MPC host. In situ XANES results illustrated that the lithiation/delithiation reversibility of Se component was gradually decreased in ether-based electrolytes, leading to an aggravated formation of long-chain polyselenides during cycling and further capacity decay. Moreover, ab initio calculations revealed that the binding energy of polyselenides (Li2Sen) with carbon host is in an order of Li2Se6 > Li2Se4 > Li2Se. The insights into the failure mechanism of Se-based cathode gain in this work are expected to serve as a guide for future design on high performance Se-based cathodes.

18.
J Am Chem Soc ; 137(24): 7793-802, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26021882

RESUMO

Two collagen-mimetic peptides, CP(+) and CP(-), are reported in which the sequences comprise a multiblock architecture having positively charged N-terminal (Pro-Arg-Gly)3 and negatively charged C-terminal (Glu-Hyp-Gly)3 triad extensions, respectively. CP(+) rapidly self-associates into positively charged nanosheets based on a monolayer structure. In contrast, CP(-) self-assembles to form negatively charged monolayer nanosheets at a much slower rate, which can be accelerated in the presence of calcium(II) ion. A 2:1 mixture of unassociated CP(-) peptide with preformed CP(+) nanosheets generates structurally defined triple-layer nanosheets in which two CP(-) monolayers have formed on the identical surfaces of the CP(+) nanosheet template. Experimental data from electrostatic force microscopy (EFM) image analysis, zeta potential measurements, and charged nanoparticle binding assays support a negative surface charge state for the triple-layer nanosheets, which is the reverse of the positive surface charge state observed for the CP(+) monolayer nanosheets. The electrostatic complementarity between the CP(+) and CP(-) triple helical cohesive ends at the layer interfaces promotes a (CP(-)/CP(+)/CP(-)) compositional gradient along the z-direction of the nanosheet. This structurally informed approach represents an attractive strategy for the fabrication of two-dimensional nanostructures with compositional control.


Assuntos
Colágeno/química , Nanoestruturas/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Modelos Moleculares , Dados de Sequência Molecular , Nanoestruturas/ultraestrutura , Estrutura Secundária de Proteína , Eletricidade Estática
19.
Chemistry ; 21(6): 2501-7, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25504756

RESUMO

Foldamers offer an attractive opportunity for the design of novel molecules that mimic the structures and functions of proteins and enzymes including biocatalysis and biomolecular recognition. Herein we report a new class of nonnatural helical sulfono-γ-AApeptide foldamers of varying lengths. The crystal structure of the sulfono-γ-AApeptide monomer S6 illustrates the intrinsic folding propensity of sulfono-γ-AApeptides, which likely originates from the bulkiness of tertiary sulfonamide moiety. The two-dimensional solution NMR spectroscopy data for the longest sequence S1 demonstrates a 10/16 right-handed helical structure. Optical analysis using circular dichroism further supports well- defined helical conformation of sulfono-γ-AApeptides in solution containing as few as five building blocks. Future development of sulfono-γ-AApeptides may lead to new foldamers with discrete functions, enabling expanded application in chemical biology and biomedical sciences.


Assuntos
Peptídeos/química , Sulfonas/química , Dicroísmo Circular , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Peptídeos/síntese química , Peptidomiméticos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
20.
FEBS Lett ; 588(17): 2911-20, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25068414

RESUMO

Homo sapiens ECT2 is a cell cycle regulator that plays critical roles in cytokinesis. ECT2 activity is restrained during interphase via intra-molecular interactions that involve its N-terminal triple-BRCT-domain and its C-terminal DH-PH domain. At anaphase, this self-inhibitory mechanism is relieved by Plk1-phosphorylated CYK-4, which directly engages the ECT2 BRCT domain. To provide a structural perspective for this auto-inhibitory property, we solved the crystal structure of the ECT2 triple-BRCT-domain. In addition, we systematically analyzed the interaction between the ECT2 BRCT domains with phospho-peptides derived from its binding partner CYK-4, and have identified Ser164 as the major phospho-residue that links CYK-4 to the second ECT2 BRCT domain.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Cristalografia por Raios X , Humanos , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA