Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 273: 116524, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795517

RESUMO

GSPT1 plays crucial physiological functions, such as terminating protein translation, overexpressed in various tumors. It is a promising anti-tumor target, but is also considered as an "undruggable" protein. Recent studies have found that a class of small molecules can degrade GSPT1 through the "molecular glue" mechanism with strong antitumor activity, which is expected to become a new therapy for hematological malignancies. Currently available GSPT1 degraders are mostly derived from the scaffold of immunomodulatory imide drug (IMiD), thus more active compounds with novel structure remain to be found. In this work, using computer-assisted multi-round virtual screening and bioassay, we identified a non-IMiD acylhydrazone compound, AN5782, which can reduce the protein level of GPST1 and obviously inhibit the proliferation of tumor cells. Some analogs were obtained by a substructure search of AN5782. The structure-activity relationship analysis revealed possible interactions between these compounds and CRBN-GSPT1. Further biological mechanistic studies showed that AN5777 decreased GSPT1 remarkably through the ubiquitin-proteasome system, and its effective cytotoxicity was CRBN- and GSPT1-dependent. Furthermore, AN5777 displayed good antiproliferative activities against U937 and OCI-AML-2 cells, and dose-dependently induced G1 phase arrest and apoptosis. The structure found in this work could be good start for antitumor drug development.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Bioensaio , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Apoptose/efeitos dos fármacos
2.
Bioorg Med Chem ; 94: 117477, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738708

RESUMO

The transient receptor potential canonical channel 5 (TRPC5), a member of the TRPC family, plays a crucial role in the regulation of various physiological activities and diseases, including those related to the central nervous system, cardiovascular system, kidney, and cancer. As a nonselective cation channel, TRPC5 mainly controls the influx of extracellular Ca2+ into cells, thereby modulating cellular depolarization and intracellular ion concentration. Inhibition of TRPC5 by small molecules presents a promising approach for the treatment of TRPC5-associated diseases. In this study, we conducted a comprehensive virtual screening of more than 1.5 million molecules from the Chemdiv database (https://www.chemdiv.com) to identify potential inhibitors of hTRPC5, utilizing the published structures and binding sites of hTRPC5 as a basis. Lipinski's rule, Veber's rule, PAINS filters, pharmacophore analysis, molecular docking, ADMET evaluation and cluster analysis methods were applied for the screening. From this rigorous screening process, 18 candidates exhibiting higher affinities to hTRPC5 were subsequently evaluated for their inhibitory effects on Ca2+ influx using a fluorescence-based assay. Notably, two molecules, namely SML-1 and SML-13, demonstrated significant inhibition of intracellular Ca2+ levels in hTRPC5-overexpressing HEK 293T cells, with IC50 values of 10.2 µM and 10.3 µM, respectively. These findings highlight SML-1 and SML-13 as potential lead molecules for the development of therapeutics targeting hTRPC5 and its associated physiological activities and diseases.

3.
Bioorg Chem ; 135: 106493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996509

RESUMO

Cyclovirobuxine-D (CVB-D) is a Buxus alkaloid and a major active constituent in the Chinese medicinal herb Buxus microphylls. Traditionally, the natural alkaloid cyclovirobuxine-D has a long history of use as a traditional Chinese medicine for cardiovascular diseases as well as to treat a wide variety of medical conditions. As we found that CVB-D inhibited T-type calcium channels, we designed and synthesized a variety of fragments and analogues and evaluated them for the first time as new Cav3.2 inhibitors. Compounds 2-7 exhibited potency against Cav 3.2 channels, and two of them were more active than their parent molecules. As a result of the in vivo experiments, both compounds 3 and 4 showed significantly reduced writhes in the acetic acid-induced writhing test. Studies of molecular modeling have identified possible mechanism(s) of Cav3.2 binding. Moreover, the relationship between structure and activity was studied in a preliminary manner. Our results indicated that compounds 3 and 4 could play an important role in the discovery and development of novel analgesics.


Assuntos
Alcaloides , Antineoplásicos , Buxus , Canais de Cálcio Tipo T , Alcaloides/farmacologia , Analgésicos/farmacologia , Buxus/química
4.
Mini Rev Med Chem ; 23(13): 1341-1359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36200242

RESUMO

Immunotherapy has been increasingly used in the treatment of cancer. Compared with chemotherapy, immunotherapy relies on the autoimmune system with fewer side effects. Small molecule immune-oncological medicines usually have good bioavailability, higher tissue and tumor permeability, and a reasonable half-life. In this work, we summarize the current advances in the field of small molecule approaches in tumor immunology, including small molecules in clinical trials and preclinical studies, containing PD1/PD-L1 small molecule inhibitors, IDO inhibitor, STING activators, RORγt agonists, TGF-ß inhibitors, etc. PD-1/DP-L1 is the most attractive target at present. Some small molecule drugs are being in clinical trial studies. Among them, CA-170 has attracted much attention as an oral small molecule drug. IDO is another popular target after PD-1/PDL1. The dual IDO and PD-1 inhibitor can improve the low response of PD-1 and has a good synergistic effect. STING is a protein that occurs naturally in the human body and can enhance the body's immunity. RORγt is mainly expressed in cells of the immune system. It promotes the differentiation of Th17 cells and produces the key factor IL-17, which plays a key role in the development of autoimmune diseases. TGFß signaling exhibits potent immunosuppressive activity on the coordinate innate and adaptive immunity, impairing the antitumor potential of innate immune cells in the tumor microenvironment. It is worth mentioning that immunotherapy drugs can often achieve better effects when used in combination, which will help defeat cancer.


Assuntos
Neoplasias , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/uso terapêutico , Receptor de Morte Celular Programada 1 , Neoplasias/tratamento farmacológico , Fatores Imunológicos , Imunoterapia , Microambiente Tumoral
5.
J Mol Graph Model ; 117: 108325, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36088765

RESUMO

CRBN protein is an E3 ubiquitin ligase which plays an important role in the ubiquitin-proteasome system of eukaryotic cells. Small molecules can modulate CRBN and induce multiple target proteins to bind with CRBN, which contributes to ubiquitination and degradation of target proteins. Modulating the CRBN protein through small molecules provides a novel idea for treatment of tumors and immune system disease. Due to most of CRBN modulators containing glutarimide skeleton, we aimed to discover novel potent CRBN modulators. In this study, Lipinski's rule and Veber rule, pharmacophore based virtual screening, docking based virtual screening and ADMET screening methods were performed to discover potential CRBN modulators. The antitumor activity of 11 candidates were evaluated by MTS assay. AN7535 showed potent antitumor activity with IC50 = 0.72 µM against HL-60 and IC50 = 1.438 µM against SMMC-7721. AO6355 showed potent antitumor activity with IC50 = 7.469 µM against SMMC-7721. MD simulations and binding free energy calculations suggested that AN7535 and AO6355 could stabilize the CRBN protein and have favorable binding affinity with CRBN protein. Luciferase complementation assay suggested AN7535 could bind to CRBN with IC50 = 215.9 µM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Endopeptidases do Proteassoma , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bioensaio , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinas/metabolismo
6.
Eur J Med Chem ; 236: 114355, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413617

RESUMO

The incidence of malignant tumor with high mortality is increasing yearly. CRBN E3 ubiquitin ligase was proved to be an antitumor target. It was found that thalidomide and its analogs could bind to CRBN E3 ubiquitin ligase and modulate CRBN. CRBN modulators could promote the binding of CRBN to specific target proteins or block the binding of CRBN to some endogenous proteins. In this way, CRBN modulators suppress various tumor cells by modulating the interactions between CRBN and various antitumor target proteins. However, almost all CRBN modulators reported include glutarimide scaffold. Therefore, the aim of this study is to developed novel CRBN modulators. Virtual screening methods and bioassay methods, including structural similarity search, molecular docking, substructure search, antitumor evaluation and apoptosis assay were used to search novel potential CRBN modulators in Specs database. Finally, 15 compounds exhibited strong inhibition activity against A549 cells. Among these active compounds, The IC50 value against A549 of AG6033 was 0.853 ± 0.030 µM. Apoptosis assay demonstrated that AG6033 could promote apoptosis of A549 cells. Further mechanism studies suggested that AG6033 caused remarkable decrease of GSPT1 and IKZF1, the substrates of CRBN, and AG6033 induced cytotoxic effects was CRBN-dependent.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Talidomida , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bioensaio , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
J Biomol Struct Dyn ; 40(3): 1172-1181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016857

RESUMO

Wee1 kinase and Checkpoint kinase 1 (Chk1) kinase, which are well known to be involved in cancer, are promising targets for cancer therapy. Most of developed Wee1 inhibitors can inhibit activity of Chk1 kinase to different degrees as well. The poor selectivity brought side effects and selective inhibitor is needed. However, the selective mechanisms of Wee1 versus Chk1 are not clear. Therefore, the design of selective Wee1 and Chk1 inhibitors would provide a meaningful starting for the development of anticancer drugs with optimal efficacy. In this study, Wee1 inhibitors with different selectivity over Chk1 were chosen to analyze the selectivity mechanism by means of molecular docking, molecular dynamics simulations and binding free energy calculations. Two key residues of Wee1 kinase and two critical residues of Chk1 were mutated to detect their effect on ligand binding into protein. The results indicated that these residues play a pivotal role in the binding interactions of ligands to receptors through hydrogen bond and hydrophobic interaction with inhibitors. This may provide a better understanding of the selective mechanism of Wee1 and Chk1. It would be beneficial to the discovery and optimization of selective Wee1 and Chk1 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia
8.
Angew Chem Int Ed Engl ; 60(48): 25468-25476, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34580976

RESUMO

A versatile terpene synthase (LcTPS2) producing unconventional macrocyclic terpenoids was characterized from Leucosceptrum canum. Engineered Escherichia coli and Nicotiana benthamiana expressing LcTPS2 produced six 18-/14-membered sesterterpenoids including five new ones and two 14-membered diterpenoids. These products represent the first macrocyclic sesterterpenoids from plants and the largest sesterterpenoid ring system identified to date. Two variants F516A and F516G producing approximately 3.3- and 2.5-fold, respectively, more sesterterpenoids than the wild-type enzyme were engineered. Both 18- and 14-membered ring sesterterpenoids displayed significant inhibitory activity on the IL-2 and IFN-γ production of T cells probably via inhibition of the MAPK pathway. The findings will contribute to the development of efficient biocatalysts to create bioactive macrocyclic sesterterpenoids, and also herald a new potential in the well-trodden territory of plant terpenoid biosynthesis.


Assuntos
Alquil e Aril Transferases/metabolismo , Imunossupressores/farmacologia , Interferon gama/antagonistas & inibidores , Interleucina-2/antagonistas & inibidores , Compostos Macrocíclicos/farmacologia , Terpenos/farmacologia , Humanos , Imunossupressores/química , Imunossupressores/metabolismo , Interferon gama/biossíntese , Interleucina-2/biossíntese , Lamiaceae/química , Lamiaceae/metabolismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Estrutura Molecular , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Terpenos/química , Terpenos/metabolismo
9.
Bioorg Chem ; 116: 105317, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34488126

RESUMO

KGP94 is a potent, selective, and competitive inhibitor of the lysosomal endopeptidase enzyme (Cathepsin L) currently in preclinical trials for the treatment of metastatic cancer, which is a leading cause of cancer-associated death. Herein, we report two new synthetic routes for synthesizing the target compound through four consecutive steps, using a Weinreb amide approach starting from a common 3-bromobenzoyl chloride. A key step in the approach is a coupling reaction of a readily available Grignard reagent with amide 4 to produce 6, a previously unreported coupling pattern. These new strategies offer an efficient and alternative approach to synthesis of target compound with an excellent overall yield.


Assuntos
Catepsina L/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tiossemicarbazonas/farmacologia , Tioureia/análogos & derivados , Catepsina L/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia
10.
Pharmacol Res ; 166: 105527, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667689

RESUMO

The invasion and metastasis of tumor cells are the hallmarks of malignant diseases and the greatest obstacle to overcome. Heparanase-mediated degradation of heparan sulfate (HS) is the critical process for tumor angiogenesis and metastasis, therefore, heparanase become an attractive target for cancer research. Herein, we reported a native fucosylated glycosaminoglycan (nHG) extracted from sea cucumber Holothuria fuscopunctata and a depolymerized nHG (dHG) and its contained oligosaccharides (hs17, hs14, hs11, hs8 and hs5), acting as heparanase inhibitors. nHG and its derivatives have the ability to bind with heparanase directly, leading to significant inhibition of heparanase activity. Moreover, their apparent binding affinity to heparanase was comparable to their inhibitory effect, which was elevated along with the increase of chain length, similar to the effect of heparins. In addition, oligosaccharides inhibited the migration and invasion of 4T1 mammary carcinoma cells and human umbilical vein endothelial cells (HUVECs) and also suppressed tube formation in Matrigel matrix and angiogenesis in the chick chorioallantoic membrane (CAM) assay. In the metastatic mouse model, oligosaccharides exhibited practical antimetastatic effects on 4T1 mammary carcinoma cells. According to the reported anticoagulant activity and the low bleeding tendency of dHG and its oligosaccharides, the use of the oligosaccharides may lead to better effects on tumor patients with thrombosis tendency.


Assuntos
Antineoplásicos/uso terapêutico , Glucuronidase/antagonistas & inibidores , Glicosaminoglicanos/uso terapêutico , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica/prevenção & controle , Neovascularização Patológica/tratamento farmacológico , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glicosaminoglicanos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Metástase Neoplásica/patologia , Neovascularização Patológica/patologia , Oligossacarídeos/química , Oligossacarídeos/uso terapêutico , Pepinos-do-Mar/química
11.
J Mol Graph Model ; 102: 107795, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161371

RESUMO

Canonical transient receptor potential channel 5 (TRPC5) plays a key role in the regulation of central nervous system, cardiovascular system, kidney disease, cancer, and could be also involved in liver function, arthritis, diabetes-associated complications and so on. However, evidence of TRPC5 function on cellular or organismic levels is sparse. There is still a need for identifying novel and efficient TRPC5 channel modulators to study TRPC5 function. In this study, based on the hTRPC5 structure obtained by homology modeling and the predicted binding site, we have performed virtual screening of 212,736 compounds from the specs database(http://www.specs.net) to find potential hTRPC5 modulators. Lipinski and Veber rules, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) and PAINS (Pan Assay Interference structures) filters were used to screen the large database. Further, multi-software combination docking, cluster analysis and interaction analysis were used to select 20 potential active candidates with novel skeleton. 4 Hits, bearing appreciable binding affinity with hTRPC5 were selected for 40ns all-atom molecular dynamics (MD) simulations under explicit water conditions. The MD simulation results suggested that the 4 Hits binding induces a slight structural change and stabilizes the hTRPC5 structure. In addition, decomposition free energy demonstrated that residues TRP434, LEU437, MET438, ALA441, ILE484, ILE487, LEU488, LEU491, LEU515, ILE517, LEU518, LEU521, PHE531, THR607, VAL610, ILE611, VAL615 played the critical role on system stability. 4 Hits, as potential modulators of hTRPC5, may be potential leads to develop effective therapeutics hTRPC5-associated diseases.


Assuntos
Simulação de Dinâmica Molecular , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
12.
Life Sci ; 262: 118495, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987061

RESUMO

BACKGROUND: The Von Hippel-Lindau (VHL) E3 ubiquitin ligase, which mediates its substrate hypoxia-inducible factor 1α (HIF-1α) for ubiquitination and subsequent degradation, is an attractive drug target in various diseases, such as anemia, inflammation, neurodegeneration and cancer. Proteolysis targeting chimeras (PROTACs) containing a VHL ligand that can hijack the E3 ligase activity to degrade the target protein has also been studied in academic and in industry areas recently. METHODS: Herein, by developing and optimizing the Bayesian Model, we report ensemble-based virtual screening as an effective strategy to discover potential VHL inhibitors from Specs database. RESULTS: The virtual screening protocol was developed, ten representative molecules were obtained and five compounds were selected for subsequent binding mode analysis to be potent VHL inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores , Teorema de Bayes , Bases de Dados de Compostos Químicos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
14.
Eur J Med Chem ; 191: 112115, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105982

RESUMO

Adenylate cyclases (ACs), play a critical role in the conversion of adenosine triphosphate (ATP) into the second messenger cyclic adenosine monophosphate (cAMP). Studies have indicated that adenylyl cyclase type 2 (AC2) is potential drug target for many diseases, however, up to now, there is no AC2-selective agonist reported. In this research, docking-based virtual screening with the combination of cell-based biological assays have been performed for discovering novel potent and selective AC2 agonists. Virtual screening disclosed a novel hit compound 8 as an AC2 agonist with EC50 value of 8.10 µM on recombinant human hAC2 + HEK293 cells. The SAR (structure activity relationship) based on the derivatives of compound 8 was further explored on recombinant AC2 cells and compound 73 was found to be the most active agonist with the EC50 of 90 nM, which is 160-fold more potent than the reported agonist Forskolin and could selectively activate AC2 to inhibit the expression of Interleukin-6. The discovery of a new class of AC2-selective agonists would provide a novel chemical probe to study the physiological function of AC2.


Assuntos
Adenilil Ciclases/metabolismo , Descoberta de Drogas , Compostos Orgânicos/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Estrutura Molecular , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 30(2): 126823, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31776060

RESUMO

Adenylyl cyclases (ACs), which are responsible for catalyzing the conversion of adenosine triphosphate (ATP) into the second messenger cyclic adenosine monophosphate (cAMP), play a critical role in cell signal transduction. In this study, a combined approach involving docking-based virtual screening, with the combination of homology modeling followed by an in-vitro, and cell-based biological assay have been performed for discovering a class of novel potent and selective isoform adenylyl cyclase type 8 (AC8) agonist. The computer-aided virtual screening was used to identify fourteen virtual cluster compounds as potential hits which were further subjected to rigorous bioassays. A novel hit compound VHC-7 (ethyl 3-(2,4-dichlorobenzyl)-2-oxoindoline-3-carboxylate) was identified as a highly potent selective AC8 agonist with EC50 value of 0.1052 ± 0.038 µM. Remarkably, the molecule herein reported can be explored further to discover greater number of hit compounds with better pharmacokinetic properties as well as to serve as a promising novel hit agonist of AC8 for the treatment of various central nervous system disorders and its associated diseases.


Assuntos
Adenilil Ciclases/uso terapêutico , Simulação de Acoplamento Molecular/métodos , Adenilil Ciclases/farmacologia , Humanos , Programas de Rastreamento , Relação Estrutura-Atividade
16.
Future Med Chem ; 11(15): 1889-1906, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31517534

RESUMO

Aim:Wee1 kinase plays a key role in the arrest of G2/M checkpoint that prevents mitotic entry in response to DNA damage. This work is to discover potent Wee1 inhibitors which can be considered valuable. Materials & Methods: Herein, Ensemble docking using multiple crystal structures was considered an effective strategy in the virtual screening. The performance of 17 scoring functions obtained from different docking software was evaluated for molecular docking. Results: Two novel compounds B1 and A2 were identified as Wee1 inhibitors with IC50 values of 10.23 ± 0.505 and 8.72 ± 0.323 µM, respectively. Further cell viability assay demonstrated that the two active compounds exhibited good anticancer activities. Conclusion: This provides a meaningful starting point for further structure optimization to discover more potent Wee1 inhibitors.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Área Sob a Curva , Sítios de Ligação , Proteínas de Ciclo Celular/classificação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Filogenia , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/classificação , Proteínas Tirosina Quinases/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirimidinonas/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Curva ROC
17.
Eur J Med Chem ; 182: 111665, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31494469

RESUMO

A series of novel derivatives of artemisinin-4-(arylamino)quinazoline have been designed and synthesized, and most of them showing potent in vitro cytotoxic activity against HCT116 and WM-266-4 cell lines. Compound 32 was the most active derivative against HCT116 cell line with an IC50 of 110 nM, and significantly improved the antitumor activity of the parent compounds dihydroartemisinin (DHA) (IC50 = 2.85 µM) and Gefitinib (IC50 = 19.82 µM). In vivo HCT116 xenografts assay showed that compound 32 exhibited potent antitumor activity with obvious tumor growth delay and tumor shrunken after 18 days treatment on xenografted mice, and especially without loss of body weight. Our results indicate that compounds 32 may represent a safe, novel structural lead for developing new chemotherapy of colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Desenho de Fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Artemisininas/síntese química , Artemisininas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Carbohydr Polym ; 224: 115146, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472868

RESUMO

Fucosylated glycosaminoglycan (FG), a glycosaminoglycan derivative containing distinct sulfated fucose (FucS) branches, displays potent anticoagulant activity by inhibiting the intrinsic tenase complex (iXase). Herein, AmFG, SvFG and HaFG from three species of sea cucumbers were isolated and depolymerized by ß-eliminative cleavage. Three series of fragments, A1-A4, S1-S4 and H1-H4, were purified from the depolymerized FGs. Based on structural analysis of these fragments, three FGs were deduced as -{→4)-[L-FucS-α(1→3)]-D-GlcA-ß(1→3)-D-GalNAc4S6S-ß(1}n-. The structures differed in sulfation types of FucS, namely, most of FucS in AmFG was Fuc3S4S, but the FucS in SvFG was Fuc2S4S, while the FucS in HaFG was Fuc3S4S, Fuc2S4S and Fuc4S. However, all FucS branches attached to C-3 of GlcA as monosaccharides. Anticoagulant and anti-iXase assays showed the octasaccharide is the minimum fragment for potent anticoagulant activity via anti-iXase irrespective of FucS types. Among FG fragments with same degree of polymerization, oligosaccharides containing Fuc2S4S had more potent anti-iXase activity.


Assuntos
Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Fucose/química , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Anticoagulantes/química , Anticoagulantes/farmacologia , Sequência de Carboidratos , Cisteína Endopeptidases
19.
Comput Biol Chem ; 79: 165-176, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30836318

RESUMO

AMP-activated protein kinase (AMPK) plays a major role in maintaining cellular energy homeostasis by sensing and responding to AMP/ADP concentrations relative to ATP. AMPK has attracted widespread attention as a potential therapeutic target for metabolic diseases such as cancer and cardiovascular diseases. The structure-based 3D pharmacophore model was developed based on the training set. The best pharmacophore model Hypo5 was proposed and validated using a decoy set, an external test set. Hypo5, with the correlation coefficient value of 0.936, cost difference value of 112.08 and low RMS value of 1.63, includes a ionizable positive, a hydrogen bond donor, a hydrogen bond acceptor and two hydrophobic features, which showed a high goodness of fit and enrichment factor. Thus it was used as a 3D query to find potential activator from the SPECS Database. Then the ADMET descriptors were used to filter all of 158 screening molecules. The 41 filtering compounds were subsequently subjected to molecular docking and Quantitative structure-activity relationship (QSAR) analysis. Finally, the compound H2 was picked out from those filtering compounds based on the receptor-ligand interaction analysis and the prediction of the QSAR models. And then it was submitted for molecular dynamics (MD) simulations to explore the stability of complex. The result indicates that the candidate could be considered a potential AMPK activator.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/análise , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Domínio Catalítico/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ativadores de Enzimas/farmacologia , Humanos , Estrutura Molecular
20.
J Comput Aided Mol Des ; 32(9): 901-915, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30182144

RESUMO

Wee1 plays a critical role in the arrest of G2/M cell cycle for DNA repair before entering mitosis. Many cancer cells have been identified as overexpression of Wee1. In this research, pharmacophore modeling, molecular docking and molecular dynamics simulation approaches were constructed to identify novel potential Wee1 inhibitors. A compound 8 was found to have a novel skeleton against Wee1 with an IC50 value of 22.32 µM and a Ki value of 13.11 µM. Kinetic assays were employed to evaluate the compound 8 as a competitive inhibitor. Compound 8 was tested against A-549 tumor cell lines with IC50 value of 17.8 µM. To investigate the intermolecular interaction of Wee1 and compound 8, further molecular dynamics simulations were performed. It indicates that the binding mode of compound 8 and reference ligand is similar. The active core scaffold of compound 8 could represent a promising lead compound for studying Wee1 and be used for further structural optimization to design more potent Wee1 inhibitors.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA