Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 68: 108235, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567398

RESUMO

Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.


Assuntos
Alcaloides , Toxinas Bacterianas , Cianobactérias , Animais , Toxinas de Cianobactérias , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Microcistinas/toxicidade , Microcistinas/química , Microcistinas/metabolismo , Cianobactérias/metabolismo , Alcaloides/metabolismo , Mamíferos
2.
Nutrients ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678334

RESUMO

The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.


Assuntos
Clorófitas , Diatomáceas , Microalgas , Phaeophyceae , Humanos , Suplementos Nutricionais
3.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142592

RESUMO

Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new "omic" technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.


Assuntos
Neoplasias , Poríferos , Animais , Organismos Aquáticos/química , Biotecnologia , Humanos , Metaboloma , Neoplasias/tratamento farmacológico , Extratos Vegetais , Poríferos/química
4.
Mar Drugs ; 20(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35447918

RESUMO

In the last decades, it has been demonstrated that marine organisms are a substantial source of bioactive compounds with possible biotechnological applications. Marine sponges, in particular those belonging to the class of Demospongiae, have been considered among the most interesting invertebrates for their biotechnological potential. In this review, particular attention is devoted to natural compounds/extracts isolated from Demospongiae and their associated microorganisms with important biological activities for pharmacological applications such as antiviral, anticancer, antifouling, antimicrobial, antiplasmodial, antifungal and antioxidant. The data here presented show that this class of sponges is an exciting source of compounds, which are worth developing into new drugs, such as avarol, a hydroquinone isolated from the marine sponge Disidea avara, which is used as an antitumor, antimicrobial and antiviral drug.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Poríferos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Organismos Aquáticos , Produtos Biológicos/farmacologia , Biotecnologia , Poríferos/microbiologia
5.
Mar Drugs ; 19(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34436283

RESUMO

In the last decades, the marine environment was discovered as a huge reservoir of novel bioactive compounds, useful for medicinal treatments improving human health and well-being. Among several marine organisms exhibiting biotechnological potential, sponges were highlighted as one of the most interesting phyla according to a wide literature describing new molecules every year. Not surprisingly, the first marine drugs approved for medical purposes were isolated from a marine sponge and are now used as anti-cancer and anti-viral agents. In most cases, experimental evidence reported that very often associated and/or symbiotic communities produced these bioactive compounds for a mutual benefit. Nowadays, beauty treatments are formulated taking advantage of the beneficial properties exerted by marine novel compounds. In fact, several biological activities suitable for cosmetic treatments were recorded, such as anti-oxidant, anti-aging, skin whitening, and emulsifying activities, among others. Here, we collected and discussed several scientific contributions reporting the cosmeceutical potential of marine sponge symbionts, which were exclusively represented by fungi and bacteria. Bioactive compounds specifically indicated as products of the sponge metabolism were also included. However, the origin of sponge metabolites is dubious, and the role of the associated biota cannot be excluded, considering that the isolation of symbionts represents a hard challenge due to their uncultivable features.


Assuntos
Cosmecêuticos/química , Poríferos , Animais , Humanos , Fitoterapia , Simbiose
6.
Foods ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203174

RESUMO

Seafood by-products, produced by a range of different organisms, such as fishes, shellfishes, squids, and bivalves, are usually discarded as wastes, despite their possible use for innovative formulations of functional foods. Considering that "wastes" of industrial processing represent up to 75% of the whole organisms, the loss of profit may be coupled with the loss of ecological sustainability, due to the scarce recycling of natural resources. Fish head, viscera, skin, bones, scales, as well as exoskeletons, pens, ink, and clam shells can be considered as useful wastes, in various weight percentages, according to the considered species and taxa. Besides several protein sources, still underexploited, the most interesting applications of fisheries and aquaculture by-products are foreseen in the biotechnological field. In fact, by-products obtained from marine sources may supply bioactive molecules, such as collagen, peptides, polyunsaturated fatty acids, antioxidant compounds, and chitin, as well as catalysts in biodiesel synthesis. In addition, those sources can be processed via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, to obtain compounds with antioxidant, anti-microbial, anti-cancer, anti-hypertensive, anti-diabetic, and anti-coagulant effects. Here, we review the main discards from fishery and aquaculture practices and analyse several bioactive compounds isolated from seafood by-products. In particular, we focus on the possible valorisation of seafood and their by-products, which represent a source of biomolecules, useful for the sustainable production of high-value nutraceutical compounds in our circular economy era.

7.
Mar Drugs ; 18(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629777

RESUMO

The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth's photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant-plant and plant-animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins.


Assuntos
Diatomáceas/metabolismo , Oceanos e Mares , Oxilipinas/metabolismo , Animais , Biotecnologia , Ecossistema , Oxilipinas/química
8.
PLoS One ; 14(10): e0224477, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31652294

RESUMO

Extensive loss of macroalgal forests advocates for large-scale restoration interventions, to compensate habitat degradation and recover the associated ecological functions and services. Yet, restoration attempts have generally been limited to small spatial extensions, with the principal aim of developing efficient restoration techniques. Here, the success of outplanting Cystoseira amentacea v. stricta germlings cultured in aquaria was experimentally explored at a scale of tens of kms, by means of a multifactorial experimental design. In the intertidal rocky shores of SE Italy, locations with a continuous distribution for hundreds of meters or with few thalli forming patches of few centimeters of C. amentacea canopy were selected. In each location, the effects of adult conspecifics and the exclusion of macrograzers (salema fish and sea urchins) on the survival of germlings were tested. We evaluated the most critical determinants of mortality for germlings, including the overlooked pressure of mesograzers (e.g. amphipods, small mollusks, polychaetes). Despite the high mortality observed during outplanting and early settlement stages, survival of C. amentacea germlings was consistently favored by the exclusion of macrograzers, while the presence of adult conspecifics had no effects. In addition, the cost analysis of the interventions showed the feasibility of the ex-situ method, representing an essential tool for preserving Cystoseira forests. Large scale restoration is possible but requires baseline information with an in-depth knowledge of the species ecology and of the areas to be restored, together with the development of specific cultivation protocols to make consistently efficient restoration interventions.


Assuntos
Conservação dos Recursos Naturais/métodos , Região do Mediterrâneo , Phaeophyceae , Conservação dos Recursos Naturais/economia , Custos e Análise de Custo , Herbivoria
9.
Toxins (Basel) ; 11(2)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30747108

RESUMO

Organisms adaptable to extreme conditions share the ability to establish protective biofilms or secrete defence toxins. The extracellular substances that are secreted may contain monosaccharides and other toxic compounds, but environmental conditions influence biofilm characteristics. Microorganisms that are present in the same environment achieve similar compositions, regardless of their phylogenetic relationships. Alternatively, cyanobacteria phylogenetically related may live in different environments, but we ignore if their physiological answers may be similar. To test this hypothesis, two strains of cyanobacteria that were both ascribed to the genus Halomicronema were isolated. H. metazoicum was isolated in marine waters off the island of Ischia (Bay of Naples, Italy), free living on leaves of Posidonia oceanica. Halomicronema sp. was isolated in adjacent thermal waters. Thus, two congeneric species adapted to different environments but diffused in the same area were polyphasically characterized by microscopy, molecular, and toxicity analyses. A variable pattern of toxicity was exhibited, in accordance with the constraints imposed by the host environments. Cyanobacteria adapted to extreme environments of thermal waters face a few competitors and exhibit a low toxicity; in contrast, congeneric strains that have adapted to stable and complex environments as seagrass meadows compete with several organisms for space and resources, and they produce toxic compounds that are constitutively secreted in the surrounding waters.


Assuntos
Alismatales/microbiologia , Cianobactérias/isolamento & purificação , Fontes Termais/microbiologia , Animais , Cianobactérias/genética , Embrião não Mamífero/microbiologia , Monitoramento Ambiental , Pradaria , Ilhas , Itália , Filogenia , Folhas de Planta/microbiologia , RNA Ribossômico 16S , Ouriços-do-Mar/microbiologia , Água do Mar/microbiologia , Especificidade da Espécie
10.
PLoS One ; 13(10): e0204954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273387

RESUMO

Cyanobacteria contribute to the ecology of various marine environments, also for their symbioses, since some of them are common hosts of sponges and ascidians. They are also emerging as an important source of novel bioactive secondary metabolites in pharmacological (as anticancer drugs) and biotechnological applications. In the present work we isolated a cyanobacteria in a free-living state from leaves of the seagrass Posidonia oceanica leaves. This newly collected strain was then cultivated under two laboratory conditions, and then characterized by combining morphological observation and molecular studies based on 16S rRNA gene sequences analysis. The strain showed 99% pairwise sequence identity with Halomicronema metazoicum ITAC101, never isolated before as a free-living organisms, but firstly described as an endosymbiont of the Mediterranean marine spongae Petrosia ficiformis, under the form of a filamentous strain. Further studies will investigate the actual role of this cyanobacterium in the leaf stratum of P. oceanica leaves, given its demonstrated ability to influence the vitality and the life cycle of other organisms. In fact, its newly demonstrated free-living stage, described in this study, indicate that Phormidium-like cyanobacteria could play important roles in the ecology of benthic and planktonic communities.


Assuntos
Alismatales/microbiologia , Cianobactérias/isolamento & purificação , Sequência de Bases , Cianobactérias/classificação , Cianobactérias/genética , Folhas de Planta/microbiologia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/isolamento & purificação , RNA Ribossômico 16S/metabolismo , Água do Mar/microbiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Simbiose
11.
Sci Rep ; 8(1): 5622, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618786

RESUMO

Diatoms are unicellular algae playing a key role as photosynthetic organisms in the world's ocean food webs. The chemical ecology of planktonic diatoms is well documented, but few studies have reported on the effects of benthic diatoms on their consumers, also due to difficulties in the collection, quantification and massive culturing of benthic species. Here for the first time we investigate the effects of feeding on two abundantly occurring benthic diatoms, Nanofrustulum shiloi and Cylindrotheca closterium, isolated from the leaves of the seagrass Posidonia oceanica, on the sea urchin Paracentrotus lividus. Adult P. lividus were fed for one month on diets of either one of the two diatoms and on the green alga Ulva rigida, used as a feeding control. By combining morphological, metabolomic and de novo transcriptomic approaches, we demonstrate toxigenic effect on embryos generated by females fed with these benthic diatoms. Furthermore, chemical analysis reveal the presence of polyunsaturated aldehydes only for N. shiloi, and a high production of other oxylipins (cytotoxic compounds on their grazers and on cancer cell lines) for both diatoms, including some additional peaks not correlated to the canonic oxylipins commonly observed in planktonic diatoms. These findings open new perspectives in the study of diatom secondary metabolites influencing their grazers.


Assuntos
Aldeídos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Metaboloma , Oxilipinas/toxicidade , Paracentrotus/efeitos dos fármacos , Transcriptoma , Animais , Diatomáceas/química , Embrião não Mamífero/metabolismo , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Paracentrotus/embriologia , Paracentrotus/genética , Paracentrotus/metabolismo
12.
Mar Drugs ; 12(1): 547-67, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24451194

RESUMO

Benthic diatoms of the genus Cocconeis contain a specific apoptogenic activity. It triggers a fast destruction of the androgenic gland in the early post-larval life of the marine shrimp Hippolyte inermis, leading to the generation of small females. Previous in vitro investigations demonstrated that crude extracts of these diatoms specifically activate a dose-dependent apoptotic process in human cancer cells (BT20 breast carcinoma) but not in human normal lymphocytes. Here, a bioassay-guided fractionation has been performed to detect the apoptogenic compound(s). Various HPLC separation systems were needed to isolate the active fractions, since the apoptogenic metabolite is highly active, present in low amounts and is masked by abundant but non-active cellular compounds. The activity is due to at least two compounds characterized by different polarities, a hydrophilic and a lipophilic fraction. We purified the lipophilic fraction, which led to the characterization of an active sub-fraction containing a highly lipophilic compound, whose molecular structure has not yet been identified, but is under investigation. The results point to the possible medical uses of the active compound. Once the molecular structure has been identified, the study and modulation of apoptotic processes in various types of cells will be possible.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diatomáceas/química , Toxinas Marinhas/farmacologia , Animais , Antineoplásicos/química , Bioensaio , Clorofila/química , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Larva , Toxinas Marinhas/química , Penaeidae/fisiologia , Espectrofotometria Ultravioleta
13.
Pharm Biol ; 50(4): 529-35, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22136301

RESUMO

CONTEXT: The marine diatoms Cocconeis scutellum Ehrenberg (Bacillariophyceae) are known to trigger apoptosis in the androgenic gland of the Mediterranean crustacean Hippolyte inermis Leach (Decapoda), affecting the shrimp's sex reversal. OBJECTIVE: The aim of this study was to evaluate a possible apoptotic effect of extracts and fractions from these microalgae also on human tissues. MATERIALS AND METHODS: The chemical profile of C. scutellum was determined by gas chromatography-mass spectrometry (GC-MS) and, afterwards, organic extracts and fractions from the diatoms were used to treat to breast cancer BT20 cells. Double labeling with annexin V-FITC and isotonic propidium iodide (PI) along with flow cytometry analysis enabled the evaluate of cell apoptosis and viability, whereas hypotonic PI staining was used to analyze the cell cycle in BT20 lines. The involvement of specific caspases was studied by Western blotting. RESULTS: Results demonstrated that the diethyl ether extract and, in particular, fraction 3, the richest fraction in eicosapentaenoic acid (EPA) from the diethyl ether extract, selectively induced apoptosis (up to 89.2% at 1 µg/well of fraction 3) and decreased viability in BT20 cells. The apoptotic effect was displayed in a concentration and time-dependent manner, by activating caspases-8 and 3, and arresting the progression of the cell cycle from S to G2-M phase. EPA alone showed similar apoptotic effects in BT20 cells. DISCUSSION AND CONCLUSION: The study demonstrates the apoptotic activity of C. scutellum diatoms on breast cancer cells and suggests their potential use as a source of apoptotic compounds.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Diatomáceas/química , Ácido Eicosapentaenoico/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Western Blotting , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fracionamento Químico , Relação Dose-Resposta a Droga , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/isolamento & purificação , Ativação Enzimática , Feminino , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Solventes/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA