Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 224: 105842, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417531

RESUMO

Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Isoxazóis , Oxidiazóis , Oxazóis , Fenilalanina/análogos & derivados , Pirrolidinonas , Valina/análogos & derivados , Animais , Humanos , Infecções por Enterovirus/tratamento farmacológico , Enterovirus Humano B , Antivirais/farmacologia , Antivirais/uso terapêutico , Combinação de Medicamentos
2.
Viruses ; 14(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146673

RESUMO

Background: Enterovirus infections affect people around the world, causing a range of illnesses, from mild fevers to severe, potentially fatal conditions. There are no approved treatments for enterovirus infections. Methods: We have tested our library of broad-spectrum antiviral agents (BSAs) against echovirus 1 (EV1) in human adenocarcinoma alveolar basal epithelial A549 cells. We also tested combinations of the most active compounds against EV1 in A549 and human immortalized retinal pigment epithelium RPE cells. Results: We confirmed anti-enteroviral activities of pleconaril, rupintrivir, cycloheximide, vemurafenib, remdesivir, emetine, and anisomycin and identified novel synergistic rupintrivir-vemurafenib, vemurafenib-pleconaril and rupintrivir-pleconaril combinations against EV1 infection. Conclusions: Because rupintrivir, vemurafenib, and pleconaril require lower concentrations to inhibit enterovirus replication in vitro when combined, their cocktails may have fewer side effects in vivo and, therefore, should be further explored in preclinical and clinical trials against EV1 and other enterovirus infections.


Assuntos
Infecções por Enterovirus , Picornaviridae , Anisomicina/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Cicloeximida/uso terapêutico , Combinação de Medicamentos , Emetina , Humanos , Vemurafenib/uso terapêutico
3.
Cell Rep Med ; 3(8): 100716, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35952669

RESUMO

The high number of mutations in the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes its immune escape. We report a longitudinal analysis of 111 vaccinated individuals for their antibody levels up to 6 months after the third dose of the BNT162b2 vaccine. After the third dose, the antibody levels decline but less than after the second dose. The booster dose remarkably increases the serum ability to block wild-type or Omicron variant spike protein's receptor-binding domain (RBD) interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, and these protective antibodies persist 3 months later. Three months after the booster dose, memory CD4+ and CD8+ T cells to the wild-type and Omicron variant are detectable in the majority of vaccinated individuals. Our data show that the third dose restores the high levels of blocking antibodies and enhances T cell responses to Omicron.


Assuntos
COVID-19 , Vacinas , Anticorpos , Vacina BNT162 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/química
4.
Front Immunol ; 12: 709759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603283

RESUMO

The clinical features of SARS-CoV-2 infection range from asymptomatic to severe disease with life-threatening complications. Understanding the persistence of immune responses in asymptomatic individuals merit special attention because of their importance in controlling the spread of the infections. We here studied the antibody and T cell responses, and a wide range of inflammation markers, in 56 SARS-CoV-2 antibody-positive individuals, identified by a population screen after the first wave of SARS-CoV-2 infection. These, mostly asymptomatic individuals, were reanalyzed 7-8 months after their infection together with 115 age-matched seronegative controls. We found that 7-8 months after the infection their antibodies to SARS-CoV-2 Nucleocapsid (N) protein declined whereas we found no decrease in the antibodies to Spike receptor-binding domain (S-RBD) when compared to the findings at seropositivity identification. In contrast to antibodies to N protein, the antibodies to S-RBD correlated with the viral neutralization capacity and with CD4+ T cell responses as measured by antigen-specific upregulation of CD137 and CD69 markers. Unexpectedly we found the asymptomatic antibody-positive individuals to have increased serum levels of S100A12, TGF-alpha, IL18, and OSM, the markers of activated macrophages-monocytes, suggesting long-term persistent inflammatory effect associated with the viral infection in asymptomatic individuals. Our results support the evidence for the long-term persistence of the inflammation process and the need for post-infection clinical monitoring of SARS-CoV-2 infected asymptomatic individuals.


Assuntos
Anticorpos Antivirais/sangue , Infecções Assintomáticas , Linfócitos T CD4-Positivos/imunologia , COVID-19/patologia , Mediadores da Inflamação/sangue , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Contagem de Linfócito CD4 , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Inflamação/imunologia , Interleucina-18/sangue , Macrófagos/imunologia , Monócitos/imunologia , Oncostatina M/sangue , Fosfoproteínas/imunologia , Domínios Proteicos/imunologia , Proteína S100A12/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Fator de Crescimento Transformador alfa/sangue
5.
JHEP Rep ; 3(4): 100296, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34222850

RESUMO

BACKGROUND & AIMS: Chronic hepatitis B is an incurable disease. Addressing the unmet medical need for therapies has been hampered by a lack of suitable cell culture models to investigate the HBV life cycle in a single experimental setup. We sought to develop a platform suitable to investigate all aspects of the entire HBV life cycle. METHODS: HepG2-NTCPsec+ cells were inoculated with HBV. Supernatants of infected cells were transferred to naïve cells. Inhibition of infection was determined in primary and secondary infected cells by high-content imaging of viral and cellular factors. Novel antivirals were triaged in cells infected with cell culture- or patient-derived HBV and in stably virus replicating cells. HBV internalisation and target-based receptor binding assays were conducted. RESULTS: We developed an HBV platform, screened 2,102 drugs and bioactives, and identified 3 early and 38 late novel HBV life cycle inhibitors using infectious HBV genotype D. Two early inhibitors, pranlukast (EC50 4.3 µM; 50% cytotoxic concentration [CC50] >50 µM) and cytochalasin D (EC50 0.07 µM; CC50 >50 µM), and 2 late inhibitors, fludarabine (EC50 0.1 µM; CC50 13.4 µM) and dexmedetomidine (EC50 6.2 µM; CC50 >50 µM), were further investigated. Pranlukast inhibited HBV preS1 binding, whereas cytochalasin D prevented the internalisation of HBV. Fludarabine inhibited the secretion of HBV progeny DNA, whereas dexmedetomidine interfered with the infectivity of HBV progeny. Patient-derived HBV genotype C was efficiently inhibited by fludarabine (EC50 0.08 µM) and dexmedetomidine (EC50 8.7 µM). CONCLUSIONS: The newly developed high-content assay is suitable to screen large-scale drug libraries, enables monitoring of the entire HBV life cycle, and discriminates between inhibition of early and late viral life cycle events. LAY SUMMARY: HBV infection is an incurable, chronic disease with few available treatments. Addressing this unmet medical need has been hampered by a lack of suitable cell culture models to study the entire viral life cycle in a single experimental setup. We developed an image-based approach suitable to screen large numbers of drugs, using a cell line that can be infected by HBV and produces large amounts of virus particles. By transferring viral supernatants from these infected cells to uninfected target cells, we could monitor the entire viral life cycle. We used this system to screen drug libraries and identified novel anti-HBV inhibitors that potently inhibit HBV in various phases of its life cycle. This assay will be an important new tool to study the HBV life cycle and accelerate the development of novel therapeutic strategies.

6.
J Virol ; 95(20): e0097321, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319778

RESUMO

Alphaviruses (family Togaviridae) include both human pathogens such as chikungunya virus (CHIKV) and Sindbis virus (SINV) and model viruses such as Semliki Forest virus (SFV). The alphavirus positive-strand RNA genome is translated into nonstructural (ns) polyprotein(s) that are precursors for four nonstructural proteins (nsPs). The three-dimensional structures of nsP2 and the N-terminal 2/3 of nsP3 reveal that these proteins consist of several domains. Cleavage of the ns-polyprotein is performed by the strictly regulated protease activity of the nsP2 region. Processing results in the formation of a replicase complex that can be considered a network of functional modules. These modules work cooperatively and should perform the same task for each alphavirus. To investigate functional interactions between replicase components, we generated chimeras using the SFV genome as a backbone. The functional modules corresponding to different parts of nsP2 and nsP3 were swapped with their counterparts from CHIKV and SINV. Although some chimeras were nonfunctional, viruses harboring the CHIKV N-terminal domain of nsP2 or any domain of nsP3 were viable. Viruses harboring the protease part of nsP2, the full-length nsP2 of CHIKV, or the nsP3 macrodomain of SINV required adaptive mutations for functionality. Seven mutations that considerably improved the infectivity of the corresponding chimeric genomes affected functionally important hot spots recurrently highlighted in previous alphavirus studies. These data indicate that alphaviruses utilize a rather limited set of strategies to survive and adapt. Furthermore, functional analysis revealed that the disturbance of processing was the main defect resulting from chimeric alterations within the ns-polyprotein. IMPORTANCE Alphaviruses cause debilitating symptoms and have caused massive outbreaks. There are currently no approved antivirals or vaccines for treating these infections. Understanding the functions of alphavirus replicase proteins (nsPs) provides valuable information for both antiviral drug and vaccine development. The nsPs of all alphaviruses consist of similar functional modules; however, to what extent these are independent in functionality and thus interchangeable among homologous viruses is largely unknown. Homologous domain swapping was used to study the functioning of modules from nsP2 and nsP3 of other alphaviruses in the context of Semliki Forest virus. Most of the introduced substitutions resulted in defects in the processing of replicase precursors that were typically compensated by adaptive mutations that mapped to determinants of polyprotein processing. Understanding the principles of virus survival strategies and identifying hot spot mutations that permit virus adaptation highlight a route to the rapid development of attenuated viruses as potential live vaccine candidates.


Assuntos
Adaptação Biológica/genética , Alphavirus/genética , Vírus da Floresta de Semliki/genética , Linhagem Celular , Vírus Chikungunya/genética , Quimera/genética , Quimera/metabolismo , Vírus de DNA/genética , Humanos , Mutação/genética , Poliproteínas/metabolismo , RNA Viral/metabolismo , Sindbis virus/genética , Proteínas não Estruturais Virais/genética , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/genética
7.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568506

RESUMO

Chikungunya virus (CHIKV, family Togaviridae) is a mosquito-transmitted alphavirus. The positive-sense RNA genome of CHIKV encodes four nonstructural proteins (nsP1 to nsP4) that are virus-specific subunits of the RNA replicase. Among nsP functions, those of nsP3 are the least understood. The C-terminal hypervariable domain (HVD) in nsP3 is disordered and serves as a platform for interactions with multiple host proteins. For Sindbis virus (SINV) and Semliki Forest virus (SFV), the nsP3 HVD has been shown to be phosphorylated. Deletion of phosphorylated regions has a mild effect on the growth of SFV and SINV in vertebrate cells. Using radiolabeling, we demonstrated that nsP3 in CHIKV and o'nyong-nyong virus is also phosphorylated. We showed that the phosphorylated residues in CHIKV nsP3 are not clustered at the beginning of the HVD. The substitution of 20 Ser/Thr residues located in the N-terminal half of the HVD or 26 Ser/Thr residues located in its C-terminal half with Ala residues reduced the activity of the CHIKV replicase and the infectivity of CHIKV in mammalian cells. Furthermore, the substitution of all 46 potentially phosphorylated residues resulted in the complete loss of viral RNA synthesis and infectivity. The mutations did not affect the interaction of the HVD in nsP3 with the host G3BP1 protein; interactions with CD2AP, BIN1, and FHL1 proteins were significantly reduced but not abolished. Thus, CHIKV differs from SFV and SINV both in the location of the phosphorylated residues in the HVD in nsP3 and, significantly, in their effect on replicase activity and virus infectivity.IMPORTANCE CHIKV outbreaks have affected millions of people, creating a need for the development of antiviral approaches. nsP3 is a component of the CHIKV RNA replicase and is involved in interactions with host proteins and signaling cascades. Phosphorylation of the HVD in nsP3 is important for the virulent alphavirus phenotype. Here, we demonstrate that nsP3 in CHIKV is phosphorylated and that the phosphorylation sites in the HVD are distributed in a unique pattern. Furthermore, the abrogation of some of the phosphorylation sites results in the attenuation of CHIKV, while abolishing all the phosphorylation sites completely blocked its replicase activity. Thus, the phosphorylation of nsP3 and/or the phosphorylation sites in nsP3 have a major impact on CHIKV infectivity. Therefore, they represent promising targets for antiviral compounds and CHIKV attenuation. In addition, this new information offers valuable insight into the vast network of virus-host interactions.


Assuntos
Infecções por Alphavirus/virologia , Vírus Chikungunya , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais , Replicação Viral/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/fisiologia , Cricetinae , DNA Helicases/metabolismo , Fibroblastos , Humanos , Vírus O'nyong-nyong/patogenicidade , Vírus O'nyong-nyong/fisiologia , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Viral/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia
8.
Viruses ; 12(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080984

RESUMO

Combination therapies have become a standard for the treatment for HIV and hepatitis C virus (HCV) infections. They are advantageous over monotherapies due to better efficacy, reduced toxicity, as well as the ability to prevent the development of resistant viral strains and to treat viral co-infections. Here, we identify new synergistic combinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), echovirus 1 (EV1), hepatitis C virus (HCV) and human immunodeficiency virus 1 (HIV-1) in vitro. We observed synergistic activity of nelfinavir with convalescent serum and with purified neutralizing antibody 23G7 against SARS-CoV-2 in human lung epithelial Calu-3 cells. We also demonstrated synergistic activity of nelfinavir with EIDD-2801 or remdesivir in Calu-3 cells. In addition, we showed synergistic activity of vemurafenib with emetine, homoharringtonine, anisomycin, or cycloheximide against EV1 infection in human lung epithelial A549 cells. We also found that combinations of sofosbuvir with brequinar or niclosamide are synergistic against HCV infection in hepatocyte-derived Huh-7.5 cells, and that combinations of monensin with lamivudine or tenofovir are synergistic against HIV-1 infection in human cervical TZM-bl cells. These results indicate that synergy is achieved when a virus-directed antiviral is combined with another virus- or host-directed agent. Finally, we present an online resource that summarizes novel and known antiviral drug combinations and their developmental status.


Assuntos
Antivirais/administração & dosagem , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Células A549 , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Antineoplásicos/farmacologia , Antivirais/farmacologia , COVID-19 , Linhagem Celular , Infecções por Coronavirus/virologia , Bases de Dados de Produtos Farmacêuticos , Combinação de Medicamentos , Descoberta de Drogas , Sinergismo Farmacológico , Enterovirus Humano B/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
9.
Viruses ; 12(9)2020 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842538

RESUMO

Asparagine (N)-linked protein glycosylation plays an important role in protein synthesis and modification. Two Zika virus (ZIKV) structural proteins, the pre-membrane (prM) and envelope (E) protein are N-glycosylated. The prM protein of all ZIKV strains contains a single N-linked glycosylation site, while not all strains contain an N-linked site in the E protein. Our aim was to examine the impact of prM and E N-linked glycosylation on ZIKV infectivity and cell trafficking. Using a ZIKV infectious clone, we found that when the N-glycan sites were removed, the prM- and the prM/E-double mutants did not produce an infectious virus in the supernatant. Further, by using ZIKV prME constructs, we found that N-glycosylation was necessary for effective secretion of ZIKV virions. The absence of the N-glycan on prM or E caused protein aggregation in the rough endoplasmatic reticulum (ER) compartment. The aggregation was more pronounced for the prM-mutation, and the mutant virus lost the ER-Golgi intermediate compartment (ERGIC) localization. In addition, lack of the N-glycan on prM induced nuclear translocation of CCAAT-enhancer-binding protein homologous protein (CHOP), an ER stress marker. To conclude, we show that the prM N-glycan is essential for the ZIKV infectious cycle, and plays an important role in viral protein trafficking, protein folding, and virion assembly.


Assuntos
Proteínas do Envelope Viral/metabolismo , Replicação Viral , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Expressão Gênica , Glicosilação , Mutação , Dobramento de Proteína , Transporte Proteico , Fator de Transcrição CHOP/metabolismo , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vírion/metabolismo , Zika virus/genética , Zika virus/metabolismo
10.
Cancers (Basel) ; 12(6)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630560

RESUMO

BACKGROUND: The evidence that pan-Bcl-2 or Bcl-xL-specific inhibitors prematurely kill virus-infected or RNA/DNA-transfected cells provides rationale for investigating these apoptotic inducers further. We hypothesized that not only invasive RNA or DNA (biological factors) but also DNA/RNA-damaging chemical or physical factors could trigger apoptosis that have been sensitized with pan-Bcl-2 or Bcl-xL-specific agents; Methods: We tested chemical and physical factors plus Bcl-xL-specific inhibitor A-1155463 in cells of various origins and the small roundworms (C. elegans); Results: We show that combination of a A-1155463 along with a DNA-damaging agent, 4-nitroquinoline-1-oxide (4NQO), prematurely kills cells of various origins as well as C. elegans. The synergistic effect is p53-dependent and associated with the release of Bad and Bax from Bcl-xL, which trigger mitochondrial outer membrane permeabilization. Furthermore, we found that combining Bcl-xL-specific inhibitors with various chemical compounds or physical insults also induced cell death; Conclusions: Thus, we were able to identify several biological, chemical and physical triggers of the evolutionarily conserved Bcl-xL-mediated apoptotic pathway, shedding light on strategies and targets for novel drug development.

11.
Viruses ; 12(6)2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545799

RESUMO

As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Testes de Neutralização/métodos , Pneumonia Viral/tratamento farmacológico , Amodiaquina/farmacologia , Animais , COVID-19 , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/terapia , Quimioterapia Combinada , Emetina/farmacologia , Células HEK293 , Células HT29 , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Soros Imunes/imunologia , Imunização Passiva/métodos , Indóis , Nelfinavir/farmacologia , Pandemias , Piranos/farmacologia , Pirróis/farmacologia , SARS-CoV-2 , Células Vero , Soroterapia para COVID-19
12.
Viruses ; 11(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832226

RESUMO

With the increasing pace of global warming, it is important to understand the role of meteorological factors in influenza virus (IV) epidemics. In this study, we investigated the impact of temperature, UV index, humidity, wind speed, atmospheric pressure, and precipitation on IV activity in Norway, Sweden, Finland, Estonia, Latvia and Lithuania during 2010⁻2018. Both correlation and machine learning analyses revealed that low temperature and UV indexes were the most predictive meteorological factors for IV epidemics in Northern Europe. Our in vitro experiments confirmed that low temperature and UV radiation preserved IV infectivity. Associations between these meteorological factors and IV activity could improve surveillance and promote development of accurate predictive models for future influenza outbreaks in the region.


Assuntos
Temperatura Baixa , Aquecimento Global , Influenza Humana/epidemiologia , Orthomyxoviridae/efeitos da radiação , Raios Ultravioleta , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Europa (Continente)/epidemiologia , Humanos , Umidade , Macrófagos/virologia , Noruega/epidemiologia , Suécia/epidemiologia , Vento
13.
Sci Rep ; 6: 37124, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845418

RESUMO

Chikungunya virus (CHIKV), genus Alphavirus, family Togaviridae, has a positive-stand RNA genome approximately 12 kb in length. In infected cells, the genome is translated into non-structural polyprotein P1234, an inactive precursor of the viral replicase, which is activated by cleavages carried out by the non-structural protease, nsP2. We have characterized CHIKV nsP2 using both cell-free and cell-based assays. First, we show that Cys478 residue in the active site of CHIKV nsP2 is indispensable for P1234 processing. Second, the substrate requirements of CHIKV nsP2 are quite similar to those of nsP2 of related Semliki Forest virus (SFV). Third, substitution of Ser482 residue, recently reported to contribute to the protease activity of nsP2, with Ala has almost no negative effect on the protease activity of CHIKV nsP2. Fourth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 completely abolished RNA replication in CHIKV and SFV trans-replication systems. In contrast, trans-replicases with Ser482 to Ala mutation were similar to wild type counterparts. Fifth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 abolished the rescue of infectious virus from CHIKV RNA transcripts while Ser482 to Ala mutation had no effect. Thus, CHIKV nsP2 is a cysteine protease.


Assuntos
Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , Cisteína Endopeptidases/metabolismo , Poliproteínas/metabolismo , Proteólise , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular , Febre de Chikungunya/genética , Cricetinae , Cisteína Endopeptidases/genética , Mutação de Sentido Incorreto , Poliproteínas/genética , RNA Viral/genética , Proteínas Virais/genética
14.
PLoS One ; 10(6): e0128686, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039055

RESUMO

The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2'-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.


Assuntos
Desoxiguanosina/análogos & derivados , Genoma Viral , Hepacivirus/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos/química , RNA Guia de Cinetoplastídeos/química , RNA Viral/antagonistas & inibidores , 8-Hidroxi-2'-Desoxiguanosina , Pareamento de Bases , Linhagem Celular Tumoral , Desoxiguanosina/química , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Terapia de Alvo Molecular , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/metabolismo , Clivagem do RNA , Interferência de RNA , Estabilidade de RNA , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Relação Estrutura-Atividade , Replicação Viral
15.
J Virol ; 89(8): 4457-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653451

RESUMO

UNLABELLED: Stress granules (SGs) are protein-mRNA aggregates that are formed in response to environmental stresses, resulting in translational inhibition. SGs are generally believed to play an antiviral role and are manipulated by many viruses, including various alphaviruses. GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) is a key component and commonly used marker of SGs. Its homolog G3BP2 is a less extensively studied SG component. Here, we demonstrate that Chikungunya virus (CHIKV) infection induces cytoplasmic G3BP1- and G3BP2-containing granules that differ from bona fide SGs in terms of morphology, composition, and behavior. For several Old World alphaviruses it has been shown that nonstructural protein 3 (nsP3) interacts with G3BPs, presumably to inhibit SG formation, and we have confirmed this interaction in CHIKV-infected cells. Surprisingly, CHIKV also relied on G3BPs for efficient replication, as simultaneous depletion of G3BP1 and G3BP2 reduced viral RNA levels, CHIKV protein expression, and viral progeny titers. The G3BPs colocalized with CHIKV nsP2 and nsP3 in cytoplasmic foci, but no colocalization with nsP1, nsP4, or dsRNA was observed. Furthermore, G3BPs could not be detected in a cellular fraction enriched for CHIKV replication/transcription complexes, suggesting that they are not directly involved in CHIKV RNA synthesis. Depletion of G3BPs did not affect viral entry, translation of incoming genomes, or nonstructural polyprotein processing but resulted in severely reduced levels of negative-stranded (and consequently also positive-stranded) RNA. This suggests a role for the G3BPs in the switch from translation to genome amplification, although the exact mechanism by which they act remains to be explored. IMPORTANCE: Chikungunya virus (CHIKV) causes a severe polyarthritis that has affected millions of people since its reemergence in 2004. The lack of approved vaccines or therapeutic options and the ongoing explosive outbreak in the Caribbean underline the importance of better understanding CHIKV replication. Stress granules (SGs) are cytoplasmic protein-mRNA aggregates formed in response to various stresses, including viral infection. The RNA-binding proteins G3BP1 and G3BP2 are essential SG components. SG formation and the resulting translational inhibition are generally considered an antiviral response, and many viruses manipulate or block this process. Late in infection, we and others have observed CHIKV nonstructural protein 3 in cytoplasmic G3BP1- and G3BP2-containing granules. These virally induced foci differed from true SGs and did not appear to represent replication complexes. Surprisingly, we found that G3BP1 and G3BP2 were also needed for efficient CHIKV replication, likely by facilitating the switch from translation to genome amplification early in infection.


Assuntos
Proteínas de Transporte/metabolismo , Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Replicação Viral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Fracionamento Celular , Chlorocebus aethiops , Clonagem Molecular , DNA Helicases , Primers do DNA/genética , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Luciferases , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Interferência de RNA , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase em Tempo Real , Células Vero , Ensaio de Placa Viral
16.
Virus Res ; 153(2): 277-87, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20801176

RESUMO

Semliki Forest virus (SFV), an alphavirus, replicates in vertebrate host and mosquito vector cells. The virus-specific part of the replicase complex constitutes nonstructural proteins 1-4 (nsP1-nsP4) and is bound to cytoplasmic membranes by an amphipathic helix inside of nsP1 and through the palmitoylation of cysteine residues in nsP1. In mammalian cells, defects in these viral functions result in a nonviable phenotype or the emergence of second-site compensatory mutations that have a positive impact on SFV infection. In most cases, these second-site compensatory mutations were found to compensate for the defect caused by the absence of palmitoylation in mosquito cells (C6/36). In C6/36 cells, however, all palmitoylation-defective viruses had severely reduced synthesis of subgenomic RNA; at the same time, several of them had very efficient formation of defective interfering genomes. Analysis of C6/36 cells that individually expressed either wild type (wt) or palmitoylation-deficient nsP1 forms revealed that similar to mammalian cells, the wt nsP1 localized predominantly to the plasma membrane, whereas its mutant forms localized to the cytoplasm. In contrast to transfected mammalian cells, all forms of nsP1 induced the formation of filopodia-like structures on some, but not all, transfected mosquito cells. These findings indicate that the plasma membrane and associated host factors may have different roles in alphavirus replicase complex formation in mammalian and mosquito cells. In general, the lack of nsP1 palmitoylation had a less severe effect on the function of the replication complex in mammalian cells when compared with that in mosquito cells.


Assuntos
Proteínas Mutantes/metabolismo , Vírus da Floresta de Semliki/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Membrana Celular/química , Cricetinae , Culicidae , Citoplasma/química , Lipoilação , Proteínas Mutantes/genética , Vírus da Floresta de Semliki/genética , Proteínas não Estruturais Virais/genética
17.
J Virol ; 84(5): 2352-64, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20015978

RESUMO

The functions of the alphavirus-encoded nonstructural protein nsP3 during infection are poorly understood. In contrast, nsP1, nsP2, and nsP4 have known enzymatic activities and functions. A functional analysis of the C-terminal region of nsP3 of Semliki Forest virus revealed the presence of a degradation signal that overlaps with a sequence element located between nsP3 and nsP4 that is required for proteolytic processing. This element was responsible for the short half-life (1 h) of individually expressed nsP3, and it also was functionally transferable to other proteins. Inducible cell lines were used to express native nsP3 or truncated mutants. The removal of 10 C-terminal amino acid (aa) residues from nsP3 increased the half-life of the protein approximately 8-fold. While the deletion of 30 C-terminal aa residues resulted in a similar stabilization, this deletion also changed the cellular localization of nsP3. This truncated mutant no longer exhibited a punctate localization in the cytoplasm, but instead filamentous stretches could be formed around the nuclei of induced cells, suggesting the existence of an additional functional element upstream of the degradation signal. C-terminally truncated uncleavable polyprotein P12(CA)3del30 was localized diffusely, which is in contrast to P12(CA)3, which is known to be associated with vesicle membranes. The induction of nsP3 or its truncated forms reduced the efficiency of virus multiplication in corresponding cells by affecting different steps of the infection cycle. The expression of nsP3 or a mutant lacking the 10 C-terminal aa residues repressed the establishment of infection, while the expression of nsP3 lacking 30 C-terminal aa residues led to the reduced synthesis of subgenomic RNA.


Assuntos
Alphavirus/metabolismo , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Alphavirus/genética , Alphavirus/patogenicidade , Infecções por Alphavirus/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Proteínas não Estruturais Virais/genética
18.
J Gen Virol ; 88(Pt 7): 1977-1985, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17554031

RESUMO

The replicase of Semliki Forest virus (SFV) consists of four non-structural proteins, designated nsP1-4, and is bound to cellular membranes via an amphipathic peptide and palmitoylated cysteine residues of nsP1. It was found that mutations preventing nsP1 palmitoylation also attenuated virus replication. The replacement of these cysteines by alanines, or their deletion, abolished virus viability, possibly due to disruption of interactions between nsP1 and nsP4, which is the catalytic subunit of the replicase. However, during a single infection cycle, the ability of the virus to replicate was restored due to accumulation of second-site mutations in nsP1. These mutations led to the restoration of nsP1-nsP4 interaction, but did not restore the palmitoylation of nsP1. The proteins with palmitoylation-site mutations, as well as those harbouring compensatory mutations in addition to palmitoylation-site mutations, were enzymically active and localized, at least in part, on the plasma membrane of transfected cells. Interestingly, deletion of 7 aa including the palmitoylation site of nsP1 had a relatively mild effect on virus viability and no significant impact on nsP1-nsP4 interaction. Similarly, the change of cysteine to alanine at the palmitoylation site of nsP1 of Sindbis virus had only a mild effect on virus replication. Taken together, these findings indicate that nsP1 palmitoylation as such is not the factor determining the ability to bind to cellular membranes and form a functional replicase complex. Instead, these abilities may be linked to the three-dimensional structure of nsP1 and the capability of nsP1 to interact with other components of the viral replicase complex.


Assuntos
Genes Virais , Mutação , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/fisiologia , Proteínas não Estruturais Virais/genética , Animais , Sítios de Ligação/genética , Células COS , Chlorocebus aethiops , Cricetinae , Células HeLa , Humanos , Ácidos Palmíticos/química , Replicon , Vírus da Floresta de Semliki/patogenicidade , Frações Subcelulares/virologia , Transfecção , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Virulência/genética , Replicação Viral/genética
19.
Virus Res ; 117(2): 264-72, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16324764

RESUMO

Hepatitis C virus (HCV) NS2 and NS3 proteins as well as the NS3 protease cofactor NS4A are essential for the replication of the virus. The presence of in vivo heterodimeric complex between HCV NS2 and NS3 has been suggested by biochemical studies. Detailed characterization of the interactions between these viral proteins is of great importance for better understanding their role in viral replication cycle and represents attractive target for antiviral agents. In this study, we demonstrated in vivo interactions between HCV NS2 and NS3 proteins using an epitope tagging technique. For this purpose NS2, NS3 and NS4A were expressed in fusion with two different tags in Cos7 cells. Immunofluorescence analysis and co-immunoprecipitation with tag-specific antibodies revealed the existence of biologically important NS3/NS4A and NS3/NS2 complexes. Similar complexes were detected also in Huh7 cells infected with Semliki Forest virus vectors expressing NS2 and NS3 or NS23 precursor polyprotein. The formation of complex between NS2 and NS3 was found not to depend on whether the proteins were expressed individually or in form of common precursor. This observation suggests the existence of direct interaction between these two proteins that may have importance for the formation of the whole HCV replication complex.


Assuntos
Hepacivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Dimerização , Humanos , Imunoprecipitação , Microscopia Confocal , Microscopia de Fluorescência , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA