Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
EJNMMI Phys ; 11(1): 45, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789880

RESUMO

PURPOSE: Long axial field-of-view (LAFOV) PET/CT systems enable PET/CT scans with reduced injected activities because of improved sensitivity. With this study, we aimed to examine the foetal radiation dose from an 18F-FDG PET/CT scan on a LAFOV PET/CT system with reduced injected activity. METHODS: Two pregnant women were retrospectively included and received an 18F-FDG PET/CT scan on a LAFOV PET/CT system with an intravenous bolus injection of 0.30 MBq/kg. Foetal radiation exposure from the PET was estimated using dose conversion factors from three published papers. Radiation exposure from the CT scans was estimated using CT-Expo. RESULTS: Foetal radiation dose from the PET scan ranged between 0.11 and 0.44 mGy. Foetal radiation exposure from the CT scan ranged between < 0.10 - 0.90 mGy depending if the foetus was included in the field-of-view. CONCLUSION: Foetal radiation dose could be reduced to < 1.5 mGy when scanning pregnant patients on a LAFOV PET/CT system. The radiation dose to the foetus was reduced significantly in our study due to the increased sensitivity of the LAFOV PET/CT system.

2.
EJNMMI Res ; 14(1): 18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358425

RESUMO

BACKGROUND: Distribution of mAbs into tumour tissue may occur via different processes contributing differently to the 89Zr-mAb uptake on PET. Target-specific binding in tumours is of main interest; however, non-specific irreversible uptake may also be present, which influences quantification. The aim was to investigate the presence of non-specific irreversible uptake in tumour tissue using Patlak linearization on 89Zr-immuno-PET data of biopsy-proven target-negative tumours. Data of two studies, including target status obtained from biopsies, were retrospectively analysed, and Patlak linearization provided the net rate of irreversible uptake (Ki). RESULTS: Two tumours were classified as CD20-negative and two as CD20-positive. Four tumours were classified as CEA-negative and nine as CEA-positive. Ki values of CD20-negative (0.43 µL/g/h and 0.92 µL/g/h) and CEA-negative tumours (mdn = 1.97 µL/g/h, interquartile range (IQR) = 1.50-2.39) were higher than zero. Median Ki values of target-negative tumours were lower than CD20-positive (1.87 µL/g/h and 1.90 µL/g/h) and CEA-positive tumours (mdn = 2.77 µL/g/h, IQR = 2.11-3.65). CONCLUSION: Biopsy-proven target-negative tumours showed irreversible uptake of 89Zr-mAbs measured in vivo using 89Zr-immuno-PET data, which suggests the presence of non-specific irreversible uptake in tumours. Consequently, for 89Zr-immuno-PET, even if the target is absent, a tumour-to-plasma ratio always increases over time.

3.
EJNMMI Phys ; 11(1): 16, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321232

RESUMO

BACKGROUND: PET scans using zirconium-89 labelled monoclonal antibodies (89Zr-mAbs), known as 89Zr-immuno-PET, are made to measure uptake in tumour and organ tissue. Uptake is related to the supply of 89Zr-mAbs in the blood. Measuring activity concentrations in blood, however, requires invasive blood sampling. This study aims to identify the best delineation strategy to obtain the image-derived blood concentration (IDBC) from 89Zr-immuno-PET scans. METHODS: PET imaging and blood sampling of two 89Zr-mAbs were included, 89Zr-cetuximab and 89Zr-durvalumab. For seven patients receiving 89Zr-cetuximab, PET scans on 1-2 h, 2 and 6 days post-injection (p.i.) were analysed. Five patients received three injections of 89Zr-durvalumab. The scanning protocol for the first two injections consisted of PET scanning on 2, 5 and 7 days p.i. and for the third injection only on 7 days p.i. Blood samples were drawn with every PET scan and the sample-derived blood concentration (SDBC) was used as gold standard for the IDBC. According to an in-house developed standard operating procedure, the aortic arch, ascending aorta, descending aorta and left ventricle were delineated. Bland-Altman analyses were performed to assess the bias (mean difference) and variability (1.96 times the standard deviation of the differences) between IDBC and SDBC. RESULTS: Overall, the activity concentration obtained from the IDBC was lower than from the SDBC. When comparing IDBC with SDBC, variability was smallest for the ascending aorta (20.3% and 17.0% for 89Zr-cetuximab and 89Zr-durvalumab, respectively). Variability for the other regions ranged between 17.9 and 30.8%. Bias for the ascending aorta was - 10.9% and - 11.4% for 89Zr-cetuximab and 89Zr-durvalumab, respectively. CONCLUSIONS: Image-derived blood concentrations should be obtained from delineating the ascending aorta in 89Zr-immuno-PET scans, as this results in the lowest variability with respect to sample-derived blood concentrations.

4.
J Immunother Cancer ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302416

RESUMO

BACKGROUND: In patients with locally advanced unresectable non-small cell lung cancer (NSCLC), durvalumab, an anti-programmed cell death ligand-1 (PD-L1) antibody, has shown improved overall survival when used as consolidation therapy following concurrent chemoradiotherapy (CRT). However, it is unclear whether CRT itself upregulates PD-L1 expression. Therefore, this study aimed to explore the changes in the uptake of the anti PD-L1 antibody [89Zr]Zr-durvalumab in tumors and healthy organs during CRT in patients with NSCLC. METHODS: Patients with NSCLC scheduled to undergo CRT were scanned 7±1 days after administration of 37±1 MBq [89Zr]Zr-durvalumab at baseline, 1-week on-treatment and 1 week after finishing 6 weeks of CRT. First, [89Zr]Zr-durvalumab uptake was visually assessed in a low dose cohort with a mass dose of 2 mg durvalumab (0.13% of therapeutic dose) and subsequently, quantification was done in a high dose cohort with a mass dose of 22.5 mg durvalumab (1.5% of therapeutic dose). Tracer pharmacokinetics between injections were compared using venous blood samples drawn in the 22.5 mg cohort. Visual assessment included suspected lesion detectability. Positron emission tomography (PET) uptake in tumoral and healthy tissues was quantified using tumor to plasma ratio (TPR) and organ to plasma ratio, respectively. RESULTS: In the 2 mg dose cohort, 88% of the 17 identified tumor lesions were positive at baseline, compared with 69% (9/13) for the 22.5 mg cohort. Although the absolute plasma concentrations between patients varied, the intrapatient variability was low. The ten quantitatively assessed lesions in the 22.5 mg cohort had a median TPR at baseline of 1.3 (IQR 0.7-1.5), on-treatment of 1.0 (IQR 0.7-1.4) and at the end of treatment of 0.7 (IQR 0.6-0.7). On-treatment, an increased uptake in bone marrow was seen in three out of five patients together with a decreased uptake in the spleen in four out of five patients. CONCLUSIONS: This study successfully imaged patients with NSCLC with [89Zr]Zr-durvalumab PET before and during CRT. Our data did not show any increase in [89Zr]Zr-durvalumab uptake in the tumor 1-week on-treatment and at the end of treatment. The changes observed in bone marrow and spleen may be due to an CRT-induced effect on immune cells. TRIAL REGISTRATION NUMBER: EudraCT number: 2019-004284-51.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Antígeno B7-H1/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Quimiorradioterapia
5.
Cancers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067257

RESUMO

INTRODUCTION: 89Zr-immuno-PET (positron emission tomography with zirconium-89-labeled monoclonal antibodies ([89Zr]Zr-mAbs)) can be used to study the biodistribution of mAbs targeting the immune system. The measured uptake consists of target-specific and non-specific components, and it can be influenced by plasma availability of the tracer. To find evidence for target-specific uptake, i.e., target engagement, we studied five immune-checkpoint-targeting [89Zr]Zr-mAbs to (1) compare the uptake with previously reported baseline values for non-specific organ uptake (ns-baseline) and (2) look for saturation effects of increasing mass doses. METHOD: 89Zr-immuno-PET data from five [89Zr]Zr-mAbs, i.e., nivolumab and pembrolizumab (anti-PD-1), durvalumab (anti-PD-L1), BI 754,111 (anti-LAG-3), and ipilimumab (anti-CTLA-4), were analysed. For each mAb, 2-3 different mass doses were evaluated. PET scans and blood samples from at least two time points 24 h post injection were available. In 35 patients, brain, kidneys, liver, spleen, lungs, and bone marrow were delineated. Patlak analysis was used to account for differences in plasma activity concentration and to quantify irreversible uptake (Ki). To identify target engagement, Ki values were compared to ns-baseline Ki values previously reported, and the effect of increasing mass doses on Ki was investigated. RESULTS: All mAbs, except ipilimumab, showed Ki values in spleen above the ns-baseline for the lowest administered mass dose, in addition to decreasing Ki values with higher mass doses, both indicative of target engagement. For bone marrow, no ns-baseline was established previously, but a similar pattern was observed. For kidneys, most mAbs showed Ki values within the ns-baseline for both low and high mass doses. However, with high mass doses, some saturation effects were seen, suggestive of a lower ns-baseline value. Ki values were near zero in brain tissue for all mass doses of all mAbs. CONCLUSION: Using Patlak analysis and the established ns-baseline values, evidence for target engagement in (lymphoid) organs for several immune checkpoint inhibitors could be demonstrated. A decrease in the Ki values with increasing mass doses supports the applicability of Patlak analysis for the assessment of target engagement for PET ligands with irreversible uptake behavior.

6.
EJNMMI Res ; 13(1): 88, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37758869

RESUMO

BACKGROUND: Convolutional neural networks (CNNs), applied to baseline [18F]-FDG PET/CT maximum intensity projections (MIPs), show potential for treatment outcome prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study is to investigate the robustness of CNN predictions to different image reconstruction protocols. Baseline [18F]FDG PET/CT scans were collected from 20 DLBCL patients. EARL1, EARL2 and high-resolution (HR) protocols were applied per scan, generating three images with different image qualities. Image-based transformation was applied by blurring EARL2 and HR images to generate EARL1 compliant images using a Gaussian filter of 5 and 7 mm, respectively. MIPs were generated for each of the reconstructions, before and after image transformation. An in-house developed CNN predicted the probability of tumor progression within 2 years for each MIP. The difference in probabilities per patient was then calculated between both EARL2 and HR with respect to EARL1 (delta probabilities or ΔP). We compared these to the probabilities obtained after aligning the data with ComBat using the difference in median and interquartile range (IQR). RESULTS: CNN probabilities were found to be sensitive to different reconstruction protocols (EARL2 ΔP: median = 0.09, interquartile range (IQR) = [0.06, 0.10] and HR ΔP: median = 0.1, IQR = [0.08, 0.16]). Moreover, higher resolution images (EARL2 and HR) led to higher probability values. After image-based and ComBat transformation, an improved agreement of CNN probabilities among reconstructions was found for all patients. This agreement was slightly better after image-based transformation (transformed EARL2 ΔP: median = 0.022, IQR = [0.01, 0.02] and transformed HR ΔP: median = 0.029, IQR = [0.01, 0.03]). CONCLUSION: Our CNN-based outcome predictions are affected by the applied reconstruction protocols, yet in a predictable manner. Image-based harmonization is a suitable approach to harmonize CNN predictions across image reconstruction protocols.

7.
Blood Adv ; 7(21): 6732-6743, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37722357

RESUMO

Investigating prognostic factors in patients with relapsed or primary refractory classical Hodgkin lymphoma (R/R cHL) is essential to optimize risk-adapted treatment strategies. We built a prognostic model using baseline quantitative 18F-fluorodeoxyglucose positron emission tomography (PET) radiomics features and clinical characteristics to predict the progression-free survival (PFS) among patients with R/R cHL treated with salvage chemotherapy followed by autologous stem cell transplantation. Metabolic tumor volume and several novel radiomics dissemination features, representing interlesional differences in distance, volume, and standard uptake value, were extracted from the baseline PET. Machine learning using backward selection and logistic regression were applied to develop and train the model on a total of 113 patients from 2 clinical trials. The model was validated on an independent external cohort of 69 patients. In addition, we validated 4 different PET segmentation methods to calculate radiomics features. We identified a subset of patients at high risk for progression with significant inferior 3-year PFS outcomes of 38.1% vs 88.4% for patients in the low-risk group in the training cohort (P < .001) and 38.5% vs 75.0% in the validation cohort (P = .015), respectively. The overall survival was also significantly better in the low-risk group (P = .022 and P < .001). We provide a formula to calculate a risk score for individual patients based on the model. In conclusion, we developed a prognostic model for PFS combining radiomics and clinical features in a large cohort of patients with R/R cHL. This model calculates a PET-based risk profile and can be applied to develop risk-stratified treatment strategies for patients with R/R cHL. These trials were registered at www.clinicaltrials.gov as #NCT02280993, #NCT00255723, and #NCT01508312.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doença de Hodgkin , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fluordesoxiglucose F18 , Doença de Hodgkin/terapia , Doença de Hodgkin/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Intervalo Livre de Progressão , Transplante Autólogo , Ensaios Clínicos como Assunto
8.
Sci Rep ; 13(1): 13111, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573446

RESUMO

Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL 18F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmaxbulk was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL.


Assuntos
Fluordesoxiglucose F18 , Linfoma Difuso de Grandes Células B , Humanos , Inteligência Artificial , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Ensaios Clínicos como Assunto
9.
Eur J Nucl Med Mol Imaging ; 50(7): 2068-2080, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36859619

RESUMO

PURPOSE: Although lymphocyte activation gene-3 (LAG-3) directed therapies demonstrate promising clinical anti-cancer activity, only a subset of patients seems to benefit and predictive biomarkers are lacking. Here, we explored the potential use of the anti-LAG-3 antibody tracer [89Zr]Zr-BI 754111 as a predictive imaging biomarker and investigated its target specific uptake as well as the correlation of its tumor uptake and the tumor immune infiltration. METHODS: Patients with head and neck (N = 2) or lung cancer (N = 4) were included in an imaging substudy of a phase 1 trial with BI 754091 (anti-PD-1) and BI 754111 (anti-LAG-3). After baseline tumor biopsy and [18F]FDG-PET, patients were given 240 mg of BI 754091, followed 8 days later by administration of [89Zr]Zr-BI 754111 (37 MBq, 4 mg). PET scans were performed 2 h, 96 h, and 144 h post-injection. To investigate target specificity, a second tracer administration was given two weeks later, this time with pre-administration of 40 (N = 3) or 600 mg (N = 3) unlabeled BI 754111, followed by PET scans at 96 h and 144 h post-injection. Tumor immune cell infiltration was assessed by immunohistochemistry and RNA sequencing. RESULTS: Tracer uptake in tumors was clearly visible at the 4-mg mass dose (tumor-to-plasma ratio 1.63 [IQR 0.37-2.89]) and could be saturated by increasing mass doses (44 mg: 0.67 [IQR 0.50-0.85]; 604 mg: 0.56 [IQR 0.42-0.75]), demonstrating target specificity. Tumor uptake correlated to immune cell-derived RNA signatures. CONCLUSIONS: [89Zr]Zr-BI-754111 PET imaging shows favorable technical and biological characteristics for developing a potential predictive imaging biomarker for LAG-3-directed therapies. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03780725. Registered 19 December 2018.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Radioisótopos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Zircônio , Linhagem Celular Tumoral
10.
Tomography ; 9(2): 459-474, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36960997

RESUMO

Current diagnostic criteria for myelofibrosis are largely based on bone marrow (BM) biopsy results. However, these have several limitations, including sampling errors. Explorative studies have indicated that imaging might form an alternative for the evaluation of disease activity, but the heterogeneity in BM abnormalities complicates the choice for the optimal technique. In our prospective diagnostic pilot study, we aimed to visualize all BM abnormalities in myelofibrosis before and during ruxolitinib treatment using both PET/CT and MRI. A random sample of patients was scheduled for examinations at baseline and after 6 and 18 months of treatment, including clinical and laboratory examinations, BM biopsies, MRI (T1-weighted, Dixon, dynamic contrast-enhanced (DCE)) and PET/CT ([15O]water, [18F]NaF)). At baseline, all patients showed low BM fat content (indicated by T1-weighted MRI and Dixon), increased BM blood flow (as measured by [15O]water PET/CT), and increased osteoblastic activity (reflected by increased skeletal [18F]NaF uptake). One patient died after the baseline evaluation. In the others, BM fat content increased to various degrees during treatment. Normalization of BM blood flow (as reflected by [15O]water PET/CT and DCE-MRI) occurred in one patient, who also showed the fastest clinical response. Vertebral [18F]NaF uptake remained stable in all patients. In evaluable cases, histopathological parameters were not accurately reflected by imaging results. A case of sampling error was suspected. We conclude that imaging results can provide information on functional processes and disease distribution throughout the BM. Differences in early treatment responses were especially reflected by T1-weighted MRI. Limitations in the gold standard hampered the evaluation of diagnostic accuracy.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Mielofibrose Primária , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Projetos Piloto , Mielofibrose Primária/diagnóstico por imagem , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/patologia , Estudos Prospectivos , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética/métodos
13.
Clin Cancer Res ; 29(3): 592-601, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394882

RESUMO

PURPOSE: Watchful waiting (WW) can be considered for patients with metastatic clear-cell renal cell carcinoma (mccRCC) with good or intermediate prognosis, especially those with <2 International Metastatic RCC Database Consortium criteria and ≤2 metastatic sites [referred to as watch and wait ("W&W") criteria]. The IMaging PAtients for Cancer drug SelecTion-Renal Cell Carcinoma study objective was to assess the predictive value of [18F]FDG PET/CT and [89Zr]Zr-DFO-girentuximab PET/CT for WW duration in patients with mccRCC. EXPERIMENTAL DESIGN: Between February 2015 and March 2018, 48 patients were enrolled, including 40 evaluable patients with good (n = 14) and intermediate (n = 26) prognosis. Baseline contrast-enhanced CT, [18F]FDG and [89Zr]Zr-DFO-girentuximab PET/CT were performed. Primary endpoint was the time to disease progression warranting systemic treatment. Maximum standardized uptake values (SUVmax) were measured using lesions on CT images coregistered to PET/CT. High and low uptake groups were defined on the basis of median geometric mean SUVmax of RECIST-measurable lesions across patients. RESULTS: The median WW time was 16.1 months [95% confidence interval (CI): 9.0-31.7]. The median WW period was shorter in patients with high [18F]FDG tumor uptake than those with low uptake (9.0 vs. 36.2 months; HR, 5.6; 95% CI: 2.4-14.7; P < 0.001). Patients with high [89Zr]Zr-DFO-girentuximab tumor uptake had a median WW period of 9.3 versus 21.3 months with low uptake (HR, 1.7; 95% CI: 0.9-3.3; P = 0.13). Patients with "W&W criteria" had a longer median WW period of 21.3 compared with patients without: 9.3 months (HR, 1.9; 95% CI: 0.9-3.9; Pone-sided = 0.034). Adding [18F]FDG uptake to the "W&W criteria" improved the prediction of WW duration (P < 0.001); whereas [89Zr]Zr-DFO-girentuximab did not (P = 0.53). CONCLUSIONS: In patients with good- or intermediate-risk mccRCC, low [18F]FDG uptake is associated with prolonged WW. This study shows the predictive value of the "W&W criteria" for WW duration and shows the potential of [18F]FDG-PET/CT to further improve this.


Assuntos
Carcinoma de Células Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18/uso terapêutico , Radioisótopos/uso terapêutico , Zircônio , Conduta Expectante , Prognóstico , Compostos Radiofarmacêuticos/uso terapêutico
14.
Blood Adv ; 7(2): 214-223, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36306337

RESUMO

We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were extracted from the baseline positron emission tomography-computed tomography of 323 patients, which included maximum standardized uptake value (SUVmax), SUVpeak, SUVmean, metabolic tumor volume (MTV), total lesion glycolysis, and 12 dissemination features pertaining to distance, differences in uptake and volume between lesions, respectively. Logistic regression with backward feature selection was used to predict progression after 2 years. The predictive value of (1) International Prognostic Index (IPI); (2) IPI plus MYC; (3) IPI, MYC, and MTV; (4) radiomics; and (5) MYC plus radiomics models were tested using the cross-validated area under the curve (CV-AUC) and positive predictive values (PPVs). IPI yielded a CV-AUC of 0.65 ± 0.07 with a PPV of 29.6%. The IPI plus MYC model yielded a CV-AUC of 0.68 ± 0.08. IPI, MYC, and MTV yielded a CV-AUC of 0.74 ± 0.08. The highest model performance of the radiomics model was observed for MTV combined with the maximum distance between the largest lesion and another lesion, the maximum difference in SUVpeak between 2 lesions, and the sum of distances between all lesions, yielding an improved CV-AUC of 0.77 ± 0.07. The same radiomics features were retained when adding MYC (CV-AUC, 0.77 ± 0.07). PPV was highest for the MYC plus radiomics model (50.0%) and increased by 20% compared with the IPI (29.6%). Adding radiomics features improved model performance and PPV and can, therefore, aid in identifying poor prognosis patients.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-myc , Humanos , Rearranjo Gênico , Hibridização in Situ Fluorescente , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética
15.
Eur J Nucl Med Mol Imaging ; 50(3): 756-764, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36370181

RESUMO

PURPOSE: As bone formation is associated with psoriatic arthritis (PsA), positron emission tomography (PET) using a 18F-Fluoride tracer may enable sensitive detection of disease activity. Our primary aim was to determine the feasibility of whole-body 18F-sodium fluoride PET-CT in clinically active PsA patients to depict new bone formation (as a reflection of disease activity) at peripheral joints and entheses. Our secondary aim was to describe 18F-sodium fluoride findings in the axial skeleton. METHODS: Sixteen patients (female 10/16, age 50.6 ± 8.9 years) with PsA fulfilling CASPAR criteria or with a clinical diagnosis of PsA according to the treating rheumatologist and with ≥ 1 clinically active enthesitis site were included. Of each patient, a whole-body 18F-sodium fluoride PET-CT scan was performed. All scans were scored for PET-positive lesions at peripheral joints, enthesis sites and the spine. Clinical disease activity was assessed by swollen/tender joint count 44, enthesitis according to MASES and SPARCC scores. RESULTS: Out of 1088 evaluated joints, 109 joints showed PET enhancement, mainly in the interphalangeal and metatarsal joints of the feet (14/109, 12.9%) and the distal interphalangeal joints of the hands (14/109, 12.9%). PET positivity was found at 44/464 enthesis sites, mainly at the patella tendon insertion (11/44, 25%) and quadriceps tendon insertion (10/44, 22.7%). Of the PET-positive joints and enthesis sites, respectively 18.2% and 29.5% were clinically positive; 81.8% and 70.5% of the PET-positive joints and entheses respectively were clinically asymptomatic. In 11 patients, ≥ 1 axial PET-positive lesion was observed, mainly in the cervical spine. CONCLUSIONS: New molecular bone formation was observed on 18F-sodium fluoride PET-CT scans, in all domains in which PsA disease activity can be observed, with a substantial part showing no clinical symptoms. CLINICAL TRIAL REGISTRATION: EudraCT: 2017-004,850-40, registered on 13 December 2017.


Assuntos
Artrite Psoriásica , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Artrite Psoriásica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluoreto de Sódio , Osteogênese , Tomografia por Emissão de Pósitrons/métodos
16.
Eur J Nucl Med Mol Imaging ; 50(2): 486-493, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166080

RESUMO

INTRODUCTION: Although visual and quantitative assessments of [18F]FDG PET/CT studies typically rely on liver uptake value as a reference or normalisation factor, consensus or consistency in measuring [18F]FDG uptake is lacking. Therefore, we evaluate the variation of several liver standardised uptake value (SUV) measurements in lymphoma [18F]FDG PET/CT studies using different uptake metrics. METHODS: PET/CT scans from 34 lymphoma patients were used to calculate SUVmaxliver, SUVpeakliver and SUVmeanliver as a function of (1) volume-of-interest (VOI) size, (2) location, (3) imaging time point and (4) as a function of total metabolic tumour volume (MTV). The impact of reconstruction protocol on liver uptake is studied on 15 baseline lymphoma patient scans. The effect of noise on liver SUV was assessed using full and 25% count images of 15 lymphoma scans. RESULTS: Generally, SUVmaxliver and SUVpeakliver were 38% and 16% higher compared to SUVmeanliver. SUVmaxliver and SUVpeakliver increased up to 31% and 15% with VOI size while SUVmeanliver remained unchanged with the lowest variability for the largest VOI size. Liver uptake metrics were not affected by VOI location. Compared to baseline, liver uptake metrics were 15-18% and 9-18% higher at interim and EoT PET, respectively. SUVliver decreased with larger total MTVs. SUVmaxliver and SUVpeakliver were affected by reconstruction protocol up to 62%. SUVmax and SUVpeak moved 22% and 11% upward between full and 25% count images. CONCLUSION: SUVmeanliver was most robust against VOI size, location, reconstruction protocol and image noise level, and is thus the most reproducible metric for liver uptake. The commonly recommended 3 cm diameter spherical VOI-based SUVmeanliver values were only slightly more variable than those seen with larger VOI sizes and are sufficient for SUVmeanliver measurements in future studies. TRIAL REGISTRATION: EudraCT: 2006-005,174-42, 01-08-2008.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem
17.
Leukemia ; 36(12): 2853-2862, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36241696

RESUMO

Risk-stratified treatment strategies have the potential to increase survival and lower toxicity in relapsed/refractory classical Hodgkin lymphoma (R/R cHL) patients. This study investigated the prognostic value of serum (s)TARC, vitamin D and lactate dehydrogenase (LDH), TARC immunohistochemistry and quantitative PET parameters in 65 R/R cHL patients who were treated with brentuximab vedotin (BV) and DHAP followed by autologous stem-cell transplantation (ASCT) within the Transplant BRaVE study (NCT02280993). At a median follow-up of 40 months, the 3-year progression free survival (PFS) was 77% (95% CI: 67-88%) and the overall survival was 95% (90-100%). Significant adverse prognostic markers for progression were weak/negative TARC staining of Hodgkin Reed-Sternberg cells in the baseline biopsy, and a high standard uptake value (SUV)mean or SUVpeak on the baseline PET scan. After one cycle of BV-DHAP, sTARC levels were strongly associated with the risk of progression using a cutoff of 500 pg/ml. On the pre-ASCT PET scan, SUVpeak was highly prognostic for progression post-ASCT. Vitamin D, LDH and metabolic tumor volume had low prognostic value. In conclusion, we established the prognostic impact of sTARC, TARC staining, and quantitative PET parameters for R/R cHL, allowing the use of these parameters in prospective risk-stratified clinical trials. Trial registration: NCT02280993.


Assuntos
Doença de Hodgkin , Imunoconjugados , Humanos , Brentuximab Vedotin , Doença de Hodgkin/diagnóstico por imagem , Doença de Hodgkin/tratamento farmacológico , Prognóstico , Estudos Prospectivos , Transplante de Células-Tronco , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/tratamento farmacológico , Imunoconjugados/uso terapêutico , Tomografia por Emissão de Pósitrons , Vitamina D/uso terapêutico
18.
EJHaem ; 3(3): 908-912, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051072

RESUMO

Blood-based biomarkers are gaining interest for response evaluation in classical Hodgkin lymphoma (cHL). However, it is unknown how blood-based biomarkers relate to quantitative 18F-FDG-PET features. We correlated extracellular vesicle-associated miRNAs (EV-miRNA), serum TARC, and complete blood count (CBC) with PET features (e.g., metabolic tumor volume [MTV], dissemination and intensity features) in 30 cHL patients at baseline. EV-miR127-3p, EV-miR24-3p, sTARC, and several CBC parameters showed weak to strong correlations with MTV and dissemination features, but not with intensity features. Two other EV-miRNAs only showed weak correlations with PET features. Therefore, blood-based biomarkers may be complementary to PET features, which warrants further exploration of combining these biomarkers in prognostic models.

19.
Autoimmun Rev ; 21(12): 103202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150433

RESUMO

Interstitial lung disease is an overarching term for a wide range of disorders characterized by inflammation and/or fibrosis in the lungs. Most prevalent forms, among others, include idiopathic pulmonary fibrosis (IPF) and connective tissue disease associated interstitial lung disease (CTD-ILD). Currently, only disease modifying treatment options are available for IPF and progressive fibrotic CTD-ILD, leading to reduction or stabilization in the rate of lung function decline at best. Management of these patients would greatly advance if we identify new strategies to improve (1) early detection of ILD, (2) predicting ILD progression, (3) predicting response to therapy and (4) understanding pathophysiology. Over the last years, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have emerged as promising molecular imaging techniques to improve ILD management. Both are non-invasive diagnostic tools to assess molecular characteristics of an individual patient with the potential to apply personalized treatment. In this review, we encompass the currently available pre-clinical and clinical studies on molecular imaging with PET and SPECT in IPF and CTD-ILD. We provide recommendations for potential future clinical applications of these tracers and directions for future research.


Assuntos
Doenças do Tecido Conjuntivo , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Tomografia Computadorizada por Raios X/métodos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/complicações , Fibrose Pulmonar Idiopática/complicações , Doenças do Tecido Conjuntivo/complicações , Imagem Molecular
20.
EJNMMI Res ; 12(1): 58, 2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089634

RESUMO

AIM: Clinical prediction models need to be validated. In this study, we used simulation data to compare various internal and external validation approaches to validate models. METHODS: Data of 500 patients were simulated using distributions of metabolic tumor volume, standardized uptake value, the maximal distance between the largest lesion and another lesion, WHO performance status and age of 296 diffuse large B cell lymphoma patients. These data were used to predict progression after 2 years based on an existing logistic regression model. Using the simulated data, we applied cross-validation, bootstrapping and holdout (n = 100). We simulated new external datasets (n = 100, n = 200, n = 500) and simulated stage-specific external datasets (1), varied the cut-off for high-risk patients (2) and the false positive and false negative rates (3) and simulated a dataset with EARL2 characteristics (4). All internal and external simulations were repeated 100 times. Model performance was expressed as the cross-validated area under the curve (CV-AUC ± SD) and calibration slope. RESULTS: The cross-validation (0.71 ± 0.06) and holdout (0.70 ± 0.07) resulted in comparable model performances, but the model had a higher uncertainty using a holdout set. Bootstrapping resulted in a CV-AUC of 0.67 ± 0.02. The calibration slope was comparable for these internal validation approaches. Increasing the size of the test set resulted in more precise CV-AUC estimates and smaller SD for the calibration slope. For test datasets with different stages, the CV-AUC increased as Ann Arbor stages increased. As expected, changing the cut-off for high risk and false positive- and negative rates influenced the model performance, which is clearly shown by the low calibration slope. The EARL2 dataset resulted in similar model performance and precision, but calibration slope indicated overfitting. CONCLUSION: In case of small datasets, it is not advisable to use a holdout or a very small external dataset with similar characteristics. A single small testing dataset suffers from a large uncertainty. Therefore, repeated CV using the full training dataset is preferred instead. Our simulations also demonstrated that it is important to consider the impact of differences in patient population between training and test data, which may ask for adjustment or stratification of relevant variables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA