Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene Ther ; 27(6): 297-306, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32051561

RESUMO

Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mutation in the glucose-6-phosphatase catalytic subunit 3 (G6PC3) gene causing profound defects in granulopoiesis, associated with increased susceptibility of neutrophils to apoptosis. Generated SCN iPSC clones exhibited the capacity to differentiate into hematopoietic cells of the myeloid lineage and we identified two cytokine conditions, i.e., using granulocyte-colony stimulating factor or granulocyte-macrophage colony stimulating factor in combination with interleukin-3, to model the SCN phenotype in vitro. Reduced numbers of granulocytes were produced by SCN iPSCs compared with control iPSCs in both settings, which reflected the phenotype in patients. Interestingly, our model showed increased monocyte/macrophage production from the SCN iPSCs. Most importantly, lentiviral genetic correction of SCN iPSCs with a codon-optimized G6PC3 transgene restored granulopoiesis and reduced apoptosis of in vitro differentiated myeloid cells. Moreover, addition of vitamin B3 clearly induced granulocytic differentiation of SCN iPSCs and increased the number of neutrophils to levels comparable with those obtained from healthy control iPSCs. In summary, we established an iPSC-derived in vitro disease model, which will serve as a tool to test the potency of alternative treatment options for SCN patients, such as small molecules and gene therapeutic vectors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Terapia Genética , Glucose-6-Fosfatase , Fator Estimulador de Colônias de Granulócitos , Humanos , Niacinamida
2.
Retrovirology ; 14(1): 34, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569216

RESUMO

BACKGROUND: Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. RESULTS: In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. CONCLUSIONS: We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.


Assuntos
Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/virologia , Lentivirus/genética , Animais , Proteínas do Capsídeo/genética , Proteínas de Transporte/genética , Linhagem Celular , Ciclofilina A/metabolismo , Ciclosporina/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lentivirus/fisiologia , Leupeptinas/farmacologia , Camundongos , Transcrição Reversa/efeitos dos fármacos , Transdução Genética , Integração Viral/efeitos dos fármacos , Internalização do Vírus
3.
Mol Ther ; 22(5): 919-28, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24434935

RESUMO

Methods for generating induced pluripotent stem cells (iPSCs) for disease modeling and cell therapies have progressed from integrating vectors to transient delivery of reprogramming factors, avoiding permanent genomic modification. A major limitation of unmodified iPSCs is the assessment of their distribution and contribution to adverse reactions in autologous cell therapy. Here, we report that polycistronic lentiviral vectors with single Flp recombinase (Flp) recognition target (FRT) sites can be used to generate murine iPSCs that are devoid of the reprogramming cassette but carry an intergenic 300-bp long terminal repeat sequence. Performing quantitative polymerase chain reaction on this marker, we could determine genetic identity and tissue contribution of iPSC-derived teratomas in mice. Moreover, we generated iPSCs carrying heterospecific FRT twin sites, enabling excision and recombinase-mediated cassette exchange (RMCE) of the reprogramming cassette for another expression unit of choice. Following screening of iPSCs for "safe harbor" integration sites, expression cassettes were introduced by RMCE into various previously silenced loci of selected single-copy iPSCs. Analysis of DNA methylation showed that RMCE reverted the local epigenetic signature, which allowed transgene expression in undifferentiated iPSCs and in differentiated progeny. These findings support the concept of creating clonotypically defined exchangeable and traceable pluripotent stem cells for disease research and cell therapy.


Assuntos
Diferenciação Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , DNA Nucleotidiltransferases/genética , Células-Tronco Pluripotentes Induzidas , Sequências Repetidas Terminais/genética , Animais , Reprogramação Celular , Metilação de DNA , Vetores Genéticos , Lentivirus/genética , Camundongos
4.
Mol Pharm ; 8(5): 1525-37, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21851067

RESUMO

Gene therapy is a promising therapeutic approach to treat primary immunodeficiencies. Indeed, the clinical trial for the Wiskott-Aldrich Syndrome (WAS) that is currently ongoing at the Hannover Medical School (Germany) has recently reported the correction of all affected cell lineages of the hematopoietic system in the first treated patients. However, an extensive study of the clonal inventory of those patients reveals that LMO2, CCND2 and MDS1/EVI1 were preferentially prevalent. Moreover, a first leukemia case was observed in this study, thus reinforcing the need of developing safer vectors for gene transfer into HSC in general. Here we present a novel self-inactivating (SIN) vector for the gene therapy of WAS that combines improved safety features. We used the elongation factor 1 alpha (EFS) promoter, which has been extensively evaluated in terms of safety profile, to drive a codon-optimized human WASP cDNA. To test vector performance in a more clinically relevant setting, we transduced murine HSPC as well as human CD34+ cells and also analyzed vector efficacy in their differentiated myeloid progeny. Our results show that our novel vector generates comparable WAS protein levels and is as effective as the clinically used LTR-driven vector. Therefore, the described SIN vectors appear to be good candidates for potential use in a safer new gene therapy protocol for WAS, with decreased risk of insertional mutagenesis.


Assuntos
Vetores Genéticos/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/metabolismo , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem Celular , Terapia Combinada/efeitos adversos , Estudos de Viabilidade , Regulação Viral da Expressão Gênica , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células-Tronco Hematopoéticas/virologia , Vírus da Hepatite B da Marmota/genética , Vírus da Hepatite B da Marmota/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/citologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Células Mieloides/virologia , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Transplante de Células-Tronco/efeitos adversos , Síndrome de Wiskott-Aldrich/sangue , Síndrome de Wiskott-Aldrich/terapia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/uso terapêutico
5.
Nucleic Acids Res ; 39(16): 7147-60, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21609958

RESUMO

The Sleeping Beauty (SB) transposase and its newly developed hyperactive variant, SB100X, are of increasing interest for genome modification in experimental models and gene therapy. The potential cytotoxicity of transposases requires careful assessment, considering that residual integration events of transposase expression vectors delivered by physicochemical transfection or episomal retroviral vectors may lead to permanent transposase expression and resulting uncontrollable transposition. Comparing retrovirus-based approaches for delivery of mRNA, episomal DNA or integrating DNA, we found that conventional SB transposase, SB100X and a newly developed codon-optimized SB100Xo may trigger premitotic arrest and apoptosis. Cell stress induced by continued SB overexpression was self-limiting due to the induction of cell death, which occurred even in the absence of a co-transfected transposable element. The cytotoxic effects of SB transposase were strictly dose dependent and heralded by induction of p53 and c-Jun. Inactivating mutations in SB's catalytic domain could not abrogate cytotoxicity, suggesting a mechanism independent of DNA cleavage activity. An improved approach of retrovirus particle-mediated mRNA transfer allowed transient and dose-controlled expression of SB100X, supported efficient transposition and prevented cytotoxicity. Transposase-mediated gene transfer can thus be tuned to maintain high efficiency in the absence of overt cell damage.


Assuntos
RNA Mensageiro/metabolismo , Transdução Genética , Transposases/genética , Inibidores de Caspase , Ciclo Celular , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Vetores Genéticos , Células HeLa , Humanos , Retroviridae/genética , Transposases/metabolismo , Vírion/genética
6.
Hum Mol Genet ; 20(16): 3176-87, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21593220

RESUMO

Directed hepatocyte differentiation from human induced pluripotent stem cells (iPSCs) potentially provides a unique platform for modeling liver genetic diseases and performing drug-toxicity screening in vitro. Wilson's disease is a genetic disease caused by mutations in the ATP7B gene, whose product is a liver transporter protein responsible for coordinated copper export into bile and blood. Interestingly, the spectrum of ATP7B mutations is vast and can influence clinical presentation (a variable spectrum of hepatic and neural manifestations), though the reason is not well understood. We describe the generation of iPSCs from a Chinese patient with Wilson's disease that bears the R778L Chinese hotspot mutation in the ATP7B gene. These iPSCs were pluripotent and could be readily differentiated into hepatocyte-like cells that displayed abnormal cytoplasmic localization of mutated ATP7B and defective copper transport. Moreover, gene correction using a self-inactivating lentiviral vector that expresses codon optimized-ATP7B or treatment with the chaperone drug curcumin could reverse the functional defect in vitro. Hence, our work describes an attractive model for studying the pathogenesis of Wilson's disease that is valuable for screening compounds or gene therapy approaches aimed to correct the abnormality. In the future, once relevant safety concerns (including the stability of the mature liver-like phenotype) and technical issues for the transplantation procedure are solved, hepatocyte-like cells from similarly genetically corrected iPSCs could be an option for autologous transplantation in Wilson's disease.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Curcumina/uso terapêutico , Terapia Genética , Hepatócitos/metabolismo , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/uso terapêutico , Sequência de Bases , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/uso terapêutico , Cobre/metabolismo , ATPases Transportadoras de Cobre , Humanos , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/uso terapêutico , Dados de Sequência Molecular , Mutação/genética , Transporte Proteico , Frações Subcelulares/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(17): 7805-10, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20385817

RESUMO

Retroviral particles assemble a few thousand units of the Gag polyproteins. Proteolytic cleavage mediated by the retroviral protease forms the bioactive retroviral protein subunits before cell entry. We hypothesized that this process could be exploited for targeted, transient, and dose-controlled transduction of nonretroviral proteins into cultured cells. We demonstrate that gammaretroviral particles tolerate the incorporation of foreign protein at several positions of their Gag or Gag-Pol precursors. Receptor-mediated and thus potentially cell-specific uptake of engineered particles occurred within minutes after cell contact. Dose and kinetics of nonretroviral protein delivery were dependent upon the location within the polyprotein precursor. Proteins containing nuclear localization signals were incorporated into retroviral particles, and the proteins of interest were released from the precursor by the retroviral protease, recognizing engineered target sites. In contrast to integration-defective lentiviral vectors, protein transduction by retroviral polyprotein precursors was completely transient, as protein transducing retrovirus-like particles could be produced that did not transduce genes into target cells. Alternatively, bifunctional protein-delivering particle preparations were generated that maintained their ability to serve as vectors for retroviral transgenes. We show the potential of this approach for targeted genome engineering of induced pluripotent stem cells by delivering the site-specific DNA recombinase, Flp. Protein transduction of Flp after proteolytic release from the matrix position of Gag allowed excision of a lentivirally transduced cassette that concomitantly expresses the canonical reprogramming transcription factors (Oct4, Klf4, Sox2, c-Myc) and a fluorescent marker gene, thus generating induced pluripotent stem cells that are free of lentivirally transduced reprogramming genes.


Assuntos
Produtos do Gene gag/biossíntese , Vírus da Leucemia Murina/metabolismo , Transdução Genética/métodos , Vírion/metabolismo , Internalização do Vírus , Produtos do Gene gag/genética , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/metabolismo , Cinética , Vírus da Leucemia Murina/genética , Sinais de Localização Nuclear/metabolismo , Peptídeo Hidrolases/metabolismo , Vírion/genética
8.
Nucleic Acids Res ; 37(22): 7429-40, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19854941

RESUMO

Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5' splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem-loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem-loop preserving the wild-type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and the 5'ss by a compensatory mutation in position +6 led to enhanced splicing. Interestingly, this mutation affects splicing only in the context of the secondary structure, arguing for a dynamic interplay between structure and primary 5'ss sequence. The reduced 5'ss accessibility could also be counteracted by recruiting a splicing enhancer domain via a modified MS2 phage coat protein to a single binding site at the tip of the simple RNA stem-loop. The mechanism of 5'ss attenuation was revealed using hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the cause of retroviral alternative splicing.


Assuntos
Processamento Alternativo , Vírus da Leucemia Murina/genética , Sítios de Splice de RNA , RNA Nuclear Pequeno/química , Sequência de Bases , Linhagem Celular , Humanos , Vírus da Leucemia Murina/fisiologia , Dados de Sequência Molecular , Proteínas Nucleares/química , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Provírus/genética , Provírus/fisiologia , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Fatores de Processamento de Serina-Arginina , Supressão Genética , Replicação Viral
9.
Mol Ther ; 17(11): 1919-28, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19672245

RESUMO

Gene transfer vectors may cause clonal imbalance and even malignant cell transformation by insertional upregulation of proto-oncogenes. Lentiviral vectors (LV) with their preferred integration in transcribed genes are considered less genotoxic than gammaretroviral vectors (GV) with their preference for integration next to transcriptional start sites and regulatory gene regions. Using a sensitive cell culture assay and a series of self-inactivating (SIN) vectors, we found that the lentiviral insertion pattern was approximately threefold less likely than the gammaretroviral to trigger transformation of primary hematopoietic cells. However, lentivirally induced mutants also showed robust replating, in line with the selection for common insertion sites (CIS) in the first intron of the Evi1 proto-oncogene. This potent proto-oncogene thus represents a CIS for both GV and LV, despite major differences in their integration mechanisms. Altering the vectors' enhancer-promoter elements had a greater effect on safety than the retroviral insertion pattern. Clinical grade LV expressing the Wiskott-Aldrich syndrome (WAS) protein under control of its own promoter had no transforming potential. Mechanistic studies support the conclusion that enhancer-mediated gene activation is the major cause for insertional transformation of hematopoietic cells, opening rational strategies for risk prevention.


Assuntos
Células da Medula Óssea/metabolismo , Gammaretrovirus/genética , Vetores Genéticos/genética , Lentivirus/genética , Mutagênese Insercional/métodos , Transdução Genética/métodos , Animais , Northern Blotting , Células da Medula Óssea/virologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Proto-Oncogenes/genética
10.
Mol Ther ; 16(4): 718-25, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18334985

RESUMO

The possible activation of cellular proto-oncogenes as a result of clonal transformation is a potential limitation in a therapeutic approach involving random integration of gene vectors. Given that enhancer promiscuity represents an important mechanism of insertional transformation, we assessed the enhancer activities of various cellular and retroviral promoters in transient transfection assays, and also in a novel experimental system designed to measure the activation of a minigene cassette contained in stably integrating retroviral vectors. Retroviral enhancer-promoters showed a significantly greater potential to activate neighboring promoters than did cellular promoters derived from human genes, elongation factor-1alpha (EF1alpha) and phosphoglycerate kinase (PGK). Self-inactivating (SIN) vector design reduced but did not abolish enhancer interactions. Using a recently established cell culture assay that detects insertional transformation by serial replating of primary hematopoietic cells, we found that SIN vectors containing the EF1alpha promoter greatly decrease the risk of insertional transformation. Despite integration of multiple copies per cell, activation of the crucial proto-oncogene Evi1 was not detectable when using SIN-EF1alpha vectors. On the basis of several quantitative indicators, the decrease in transforming activity was highly significant (more than tenfold, P < 0.01) when compared with similarly designed vectors containing a retroviral enhancer-promoter with or without a well-characterized genetic insulator core element. In this manner, the insertional biosafety of therapeutic gene vectors can be greatly enhanced and proactively evaluated in sensitive cell-based assays.


Assuntos
Vetores Genéticos/toxicidade , Regiões Promotoras Genéticas , Retroviridae/genética , Transfecção/métodos , Animais , Células da Medula Óssea/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Fibroblastos/metabolismo , Humanos , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Insercional , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Proto-Oncogene Mas , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Virol ; 81(7): 3652-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17229710

RESUMO

Alternative splicing has been recognized as a major mechanism for creating proteomic diversity from a limited number of genes. However, not all determinants regulating this process have been characterized. Using subviral human immunodeficiency virus (HIV) env constructs we observed an enhanced splicing of the RNA when expression was under control of the cytomegalovirus (CMV) promoter instead of the HIV long terminal repeat (LTR). We extended these observations to LTR- or CMV-driven murine leukemia proviruses, suggesting that retroviral LTRs are adapted to inefficient alternative splicing at most sites in order to maintain balanced gene expression.


Assuntos
Processamento Alternativo/genética , HIV/genética , Vírus da Leucemia Murina/genética , Regiões Promotoras Genéticas/genética , Citomegalovirus/genética , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , HIV/metabolismo , Repetição Terminal Longa de HIV , Vírus da Leucemia Murina/metabolismo , RNA Viral/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana
12.
J Biol Chem ; 281(49): 37381-90, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17038324

RESUMO

Alternative splicing of the primary transcript plays a key role in retroviral gene expression. In contrast to all known mechanisms that mediate alternative splicing in retroviruses, we found that in murine leukemia virus, distinct elements located upstream of the 5' splice site either inhibited or activated splicing of the genomic RNA. Detailed analysis of the first untranslated exon showed that the primer binding site (PBS) activates splicing, whereas flanking sequences either downstream or upstream of the PBS are inhibitory. This new function of the PBS was independent of its orientation and primer binding but associated with a particular destabilizing role in a proposed secondary structure. On the contrary, all sequences surrounding the PBS that are involved in stem formation of the first exon were found to suppress splicing. Targeted mutations that destabilized the central stem and compensatory mutations of the counter strand clearly validated the concept that murine leukemia virus attenuates its 5' splice site by forming an inhibitory stem-loop in its first exon. Importantly, this mode of splice regulation was conserved in a complete proviral clone. Some of the mutants that increase splicing revealed an opposite effect on translation, implying that the first exon also regulates this process. Together, these findings suggest that sequences upstream of the 5' splice site play an important role in splice regulation of simple retroviruses, directly or indirectly attenuating the efficiency of splicing.


Assuntos
Processamento Alternativo , Vírus da Leucemia Murina/genética , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Éxons , Regulação Viral da Expressão Gênica , Vetores Genéticos , Vírus da Leucemia Murina/metabolismo , Camundongos , Modelos Moleculares , Conformação de Ácido Nucleico , Plasmídeos/genética , RNA Viral/química , RNA Viral/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA