Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36282064

RESUMO

Neutrophils are critical to host defence, executing diverse strategies to perform their antimicrobial and regulatory functions. One tactic is the production of neutrophil extracellular traps (NETs). In response to certain stimuli, neutrophils decondense their lobulated nucleus and release chromatin into the extracellular space through a process called NETosis. However, NETosis, and the subsequent degradation of NETs, can become dysregulated. NETs are proposed to play a role in infectious as well as many non-infection related diseases including cancer, thrombosis, autoimmunity and neurological disease. Consequently, there is a need to develop specific tools for the study of these structures in disease contexts. In this study, we identified a NET-specific histone H3 cleavage event and harnessed this to develop a cleavage site-specific antibody for the detection of human NETs. By microscopy, this antibody distinguishes NETs from chromatin in purified and mixed cell samples. It also detects NETs in tissue sections. We propose this antibody as a new tool to detect and quantify NETs.


Assuntos
Armadilhas Extracelulares , Trombose , Humanos , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Neutrófilos , Trombose/metabolismo , Cromatina/metabolismo
2.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522219

RESUMO

Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.


Assuntos
Neoplasias , Neutrófilos , Humanos , Imunidade Inata , Inflamação , Neoplasias/genética , Fenótipo
3.
Immunity ; 54(7): 1377-1391, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260886

RESUMO

Neutrophils are immune cells with unusual biological features that furnish potent antimicrobial properties. These cells phagocytose and subsequently kill prokaryotic and eukaryotic organisms very efficiently. Importantly, it is not only their ability to attack microbes within a constrained intracellular compartment that endows neutrophils with antimicrobial function. They can unleash their effectors into the extracellular space, where, even post-mortem, their killing machinery can endure and remain functional. The antimicrobial activity of neutrophils must not be misconstrued as being microbe specific and should be viewed more generally as biotoxic. Outside of fighting infections, neutrophils can harness their noxious machinery in other contexts, like cancer. Inappropriate or dysregulated neutrophil activation damages the host and contributes to autoimmune and inflammatory disease. Here we review a number of topics related to neutrophil biology based on contemporary findings.


Assuntos
Neutrófilos/imunologia , Animais , Espaço Extracelular/imunologia , Humanos , Inflamação/imunologia , Ativação de Neutrófilo/imunologia , Fagocitose/imunologia
4.
Elife ; 92020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32391789

RESUMO

Neutrophils are important innate immune cells that tackle invading pathogens with different effector mechanisms. They acquire this antimicrobial potential during their maturation in the bone marrow, where they differentiate from hematopoietic stem cells in a process called granulopoiesis. Mature neutrophils are terminally differentiated and short-lived with a high turnover rate. Here, we show a critical role for linker histone H1 on the differentiation and function of neutrophils using a genome-wide CRISPR/Cas9 screen in the human cell line PLB-985. We systematically disrupted expression of somatic H1 subtypes to show that individual H1 subtypes affect PLB-985 maturation in opposite ways. Loss of H1.2 and H1.4 induced an eosinophil-like transcriptional program, thereby negatively regulating the differentiation into the neutrophil lineage. Importantly, H1 subtypes also affect neutrophil differentiation and the eosinophil-directed bias of murine bone marrow stem cells, demonstrating an unexpected subtype-specific role for H1 in granulopoiesis.


Assuntos
Células-Tronco Hematopoéticas/citologia , Histonas/fisiologia , Neutrófilos/citologia , Animais , Medula Óssea/fisiologia , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Eosinófilos/citologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Hematopoese , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Fatores de Transcrição/fisiologia
5.
Eur J Immunol ; 49(4): 590-599, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30758851

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease that has high morbidity and can result in multi-organ damage. SLE is characterized by dysregulated activation of T- and B-lymphocytes and the production of autoantibodies directed against nuclear components. The endonuclease deoxyribonuclease 1 (DNase1) is abundant in blood and a subset of SLE patients have mutations in DNASE1. Furthermore, a report showed that Dnase1-deficient mice develop an SLE-like disease, but these mice also carry a deletion of the gene adjacent to Dnase1, which encodes the chaperone TRAP1/HSP75. We generated a murine strain deficient in Dnase1 with an intact Trap1 gene to examine if a lack of DNase1 is responsible for the development of a spontaneous SLE-like disease. We show that the Dnase1-deficient mice do indeed develop an SLE-like phenotype with elevated autoantibody production by 9 months and kidney damage by 12 months. Notably, this model recapitulates the female bias seen in human SLE patients since female Dnase1-deficient mice produced the highest concentrations of autoantibodies and had more severe kidney damage than males. Since there is currently no cure for SLE the protective role of DNase1 as demonstrated in our study remains of great therapeutic interest.


Assuntos
Desoxirribonuclease I/deficiência , Estudos de Associação Genética , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/etiologia , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Biópsia , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética/métodos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/etiologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Masculino , Camundongos , Camundongos Knockout , Fatores Sexuais
6.
Sci Immunol ; 3(26)2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143555

RESUMO

The death of a cell is an inevitable part of its biology. During homeostasis, most cells die through apoptosis. If homeostasis is disturbed, cell death can switch to proinflammatory forms of death, such as necroptosis, pyroptosis, or NETosis. We demonstrate that the formation of neutrophil extracellular traps (NETs), a special form of neutrophil cell death that releases chromatin structures to the extracellular space, is dependent on gasdermin D (GSDMD). GSDMD is a pore-forming protein and an executor of pyroptosis. We screened a chemical library and found a small molecule based on the pyrazolo-oxazepine scaffold that efficiently blocks NET formation and GSDMD-mediated pyroptotic cell death in human cells. During NETosis, GSDMD is proteolytically activated by neutrophil proteases and, in turn, affects protease activation and nuclear expansion in a feed-forward loop. In addition to the central role of GSDMD in pyroptosis, we propose that GSDMD also plays an essential function in NETosis.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Morte Celular/fisiologia , Armadilhas Extracelulares/fisiologia , Proteínas de Neoplasias/fisiologia , Neutrófilos/fisiologia , Animais , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Mutantes , Peptídeo Hidrolases/farmacologia , Proteínas de Ligação a Fosfato
7.
J Biol Chem ; 293(13): 4893-4900, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29414783

RESUMO

Inflammasomes are cytosolic complexes that mature and secrete the inflammatory cytokines interleukin 1ß (IL-1ß) and IL-18 and induce pyroptosis. The NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome detects many pathogen- and danger-associated molecular patterns, and reactive oxygen species (ROS)/reactive nitrogen species (RNS) have been implicated in its activation. The phenazine pyocyanin (PCN) is a virulence factor of Pseudomonas aeruginosa and generates superoxide in cells. Here we report that PCN inhibits IL-1ß and IL-18 release and pyroptosis upon NLRP3 inflammasome activation in macrophages by preventing speck formation and Caspase-1 maturation. Of note, PCN did not regulate the AIM2 (absent in melanoma 2) or NLRC4 inflammasomes or tumor necrosis factor (TNF) secretion. Imaging of the fluorescent glutathione redox potential sensor Grx1-roGFP2 indicated that PCN provokes cytosolic and nuclear but not mitochondrial redox changes. PCN-induced intracellular ROS/RNS inhibited the NLRP3 inflammasome posttranslationally, and hydrogen peroxide or peroxynitrite alone were sufficient to block its activation. We propose that cytosolic ROS/RNS inhibit the NLRP3 inflammasome and that PCN's anti-inflammatory activity may help P. aeruginosa evade immune recognition.


Assuntos
Inflamassomos/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Piocianina/imunologia , Espécies Reativas de Nitrogênio/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Caspase 1/imunologia , Linhagem Celular , Proteínas de Ligação a DNA/imunologia , Glutarredoxinas/imunologia , Evasão da Resposta Imune , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Infecções por Pseudomonas/patologia
8.
J Immunol ; 200(5): 1607-1617, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358279

RESUMO

Inflammasomes are multimeric protein complexes that are activated through a NOD-like receptor and regulate the proteolytic activation of caspase-1 and cytokines, like IL-1ß. The NLRP3 inflammasome is implicated in many human pathologies including infections, autoinflammatory syndromes, chronic inflammation, and metabolic diseases; however, the molecular mechanisms of activation are not fully understood. In this study we show that NLRP3 inflammasome activation requires intracellular copper. A clinically approved copper chelator, tetrathiomolybdate, inhibited the canonical NLRP3 but not the AIM2, NLRC4, and NLRP1 inflammasomes or NF-κB-dependent priming. We demonstrate that NLRP3 inflammasome activation is blocked by removing copper from the active site of superoxide dismutase 1, recapitulating impaired inflammasome function in superoxide dismutase 1-deficient mice. This regulation is specific to macrophages, but not monocytes, both in mice and humans. In vivo, depletion of bioavailable copper resulted in attenuated caspase-1-dependent inflammation and reduced susceptibility to LPS-induced endotoxic shock. Our results indicate that targeting the intracellular copper homeostasis has potential for the treatment of NLRP3-dependent diseases.


Assuntos
Cobre/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Superóxido Dismutase-1/metabolismo
9.
Dev Cell ; 43(4): 449-462.e5, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29103955

RESUMO

Neutrophils are essential for immune defense and can respond to infection by releasing chromatin in the form of neutrophil extracellular traps (NETs). Here we show that NETs are induced by mitogens and accompanied by induction of cell-cycle markers, including phosphorylation of the retinoblastoma protein and lamins, nuclear envelope breakdown, and duplication of centrosomes. We identify cyclin-dependent kinases 4 and 6 (CDK4/6) as essential regulators of NETs and show that the response is inhibited by the cell-cycle inhibitor p21Cip. CDK6, in neutrophils, is required for clearance of the fungal pathogen Candida albicans. Our data describe a function for CDK4/6 in immunity.


Assuntos
Ciclo Celular/fisiologia , Armadilhas Extracelulares/metabolismo , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Animais , Ciclo Celular/imunologia , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Armadilhas Extracelulares/imunologia , Camundongos Transgênicos , Fosforilação , Proteína do Retinoblastoma/imunologia , Proteína do Retinoblastoma/metabolismo
10.
Elife ; 62017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574339

RESUMO

Neutrophils release neutrophil extracellular traps (NETs) which ensnare pathogens and have pathogenic functions in diverse diseases. We examined the NETosis pathways induced by five stimuli; PMA, the calcium ionophore A23187, nigericin, Candida albicans and Group B Streptococcus. We studied NET production in neutrophils from healthy donors with inhibitors of molecules crucial to PMA-induced NETs including protein kinase C, calcium, reactive oxygen species, the enzymes myeloperoxidase (MPO) and neutrophil elastase. Additionally, neutrophils from chronic granulomatous disease patients, carrying mutations in the NADPH oxidase complex or a MPO-deficient patient were examined. We show that PMA, C. albicans and GBS use a related pathway for NET induction, whereas ionophores require an alternative pathway but that NETs produced by all stimuli are proteolytically active, kill bacteria and composed mainly of chromosomal DNA. Thus, we demonstrate that NETosis occurs through several signalling mechanisms, suggesting that extrusion of NETs is important in host defence.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Calcimicina/metabolismo , Candida albicans/imunologia , Doença Granulomatosa Crônica/patologia , Voluntários Saudáveis , Humanos , Redes e Vias Metabólicas , Nigericina/metabolismo , Streptococcus/imunologia , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/metabolismo
11.
Chembiochem ; 18(10): 888-893, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28240414

RESUMO

Neutrophils are short-lived leukocytes that migrate to sites of infection as part of the acute immune response, where they phagocytose, degranulate, and form neutrophil extracellular traps (NETs). During NET formation, the nuclear lobules of neutrophils disappear and the chromatin expands and, accessorized with neutrophilic granule proteins, is expelled. NETs can be pathogenic in, for example, sepsis, cancer, and autoimmune and cardiovascular diseases. Therefore, the identification of inhibitors of NET formation is of great interest. Screening of a focused library of natural-product-inspired compounds by using a previously validated phenotypic NET assay identified a group of tetrahydroisoquinolines as new NET formation inhibitors. This compound class opens up new avenues for the study of cellular death through NET formation (NETosis) at different stages, and might inspire new medicinal chemistry programs aimed at NET-dependent diseases.


Assuntos
Armadilhas Extracelulares/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Neutrófilos/metabolismo , Tetra-Hidroisoquinolinas/farmacologia , Morte Celular , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos
12.
Blood ; 126(26): 2842-51, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26491069

RESUMO

Neutrophils play an essential role in the initial stages of inflammation by balancing pro- and antiinflammatory signals. Among these signals are the production of proinflammatory cytokines and the timely initiation of antiinflammatory cell death via constitutive apoptosis. Here we identify ataxia-telangiectasia mutated (ATM) kinase as a modulator of these neutrophil functions. Ataxia-telangiectasia (AT) is a pleiotropic multisystem disorder caused by mutations in the gene-encoding ATM, a master regulator of the DNA damage response. In addition to progressive neurodegeneration and high rates of cancer, AT patients have numerous symptoms that can be linked to chronic inflammation. We report that neutrophils isolated from patients with AT overproduce proinflammatory cytokines and have a prolonged lifespan compared with healthy controls. This effect is partly mediated by increases in activation of p38 MAP kinase. Furthermore, we show that the oxidative burst, catalyzed by nicotinamide adenine dinucleotide phosphate oxidase, can activate ATM in neutrophils. Finally, activation of ATM and DNA damage signaling suppress cytokine production and can abrogate the overproduction of IL-8 in ROS-deficient cells. This reveals a novel mechanism for the regulation of cytokine production and apoptosis, establishing DNA damage as a downstream mediator of immune regulation by reactive oxygen species. We propose that deficiencies in the DNA damage response, like deficiencies in the oxidative burst seen in chronic granulomatous disease, could lead to pathologic inflammation.


Assuntos
Apoptose/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ativação Enzimática/fisiologia , Neutrófilos/metabolismo , Explosão Respiratória/fisiologia , Western Blotting , Separação Celular , Citocinas/biossíntese , Citometria de Fluxo , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase em Tempo Real
13.
Cell Host Microbe ; 15(4): 435-45, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721572

RESUMO

Following contact with the epithelium, the enteric intracellular bacterial pathogen Shigella flexneri invades epithelial cells and escapes intracellular phagosomal destruction using its type III secretion system (T3SS). The bacterium replicates within the host cell cytosol and spreads between cells using actin-based motility, which is mediated by the virulence factor IcsA (VirG). Whereas S. flexneri invasion is well characterized, adhesion mechanisms of the bacterium remain elusive. We found that IcsA also functions as an adhesin that is both necessary and sufficient to promote contact with host cells. As adhesion can be beneficial or deleterious depending on the host cell type, S. flexneri regulates IcsA-dependent adhesion. Activation of the T3SS in response to the bile salt deoxycholate triggers IcsA-dependent adhesion and enhances pathogen invasion. IcsA-dependent adhesion contributes to virulence in a mouse model of shigellosis, underscoring the importance of this adhesin to S. flexneri pathogenesis.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Proteínas de Ligação a DNA/metabolismo , Shigella flexneri/patogenicidade , Fatores de Transcrição/metabolismo , Animais , Antígenos de Bactérias/genética , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Células CACO-2 , Linhagem Celular Tumoral , Colagogos e Coleréticos/farmacologia , Ácido Desoxicólico/farmacologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/patologia , Células Epiteliais/microbiologia , Células HeLa , Humanos , Camundongos , Shigella flexneri/genética
14.
Front Immunol ; 4: 48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23508552

RESUMO

Upon activation, neutrophils release fibers composed of chromatin and neutrophil proteins termed neutrophil extracellular traps (NETs). NETs trap and kill microbes, activate dendritic cells and T cells, and are implicated in autoimmune and vascular diseases. Given the growing interest in the role of neutrophils in cancer immunoediting and the diverse function of NETs, we searched for NETs release by tumor-associated neutrophils (TANs). Using pediatric Ewing sarcoma (ES) as a model, we retrospectively examined histopathological material from diagnostic biopsies of eight patients (mean ± SD age of 11.5 ± 4.7 years). TANs were found in six patients and in two of those we identified NETs. These two patients presented with metastatic disease and despite entering complete remission after intensive chemotherapy had an early relapse. NETs were not identified in the diagnostic biopsies of two patients with localized disease and two with metastatic disease. This study is the first to show that TANs in ES are activated to make NETs, pointing to a possible role of NETs in cancer.

15.
Annu Rev Immunol ; 30: 459-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22224774

RESUMO

Neutrophils are the most abundant white blood cells in circulation, and patients with congenital neutrophil deficiencies suffer from severe infections that are often fatal, underscoring the importance of these cells in immune defense. In spite of neutrophils' relevance in immunity, research on these cells has been hampered by their experimentally intractable nature. Here, we present a survey of basic neutrophil biology, with an emphasis on examples that highlight the function of neutrophils not only as professional killers, but also as instructors of the immune system in the context of infection and inflammatory disease. We focus on emerging issues in the field of neutrophil biology, address questions in this area that remain unanswered, and critically examine the experimental basis for common assumptions found in neutrophil literature.


Assuntos
Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Comunicação Celular/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Infecções/imunologia , Infecções/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Ativação de Neutrófilo/imunologia
16.
PLoS One ; 6(12): e28526, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174830

RESUMO

Cystic fibrosis patients suffer from chronic lung infection and inflammation due to the secretion of viscous sputum. Sputum viscosity is caused by extracellular DNA, some of which originates from the release of neutrophil extracellular traps (NETs). During NET formation neutrophil elastase (NE) partially processes histones to decondense chromatin. NE is abundant in CF sputum and is thought to contribute to tissue damage. Exogenous nucleases are a palliative treatment in CF as they promote sputum solubilization. We show that in a process reminiscent of NET formation, NE enhances sputum solubilization by cleaving histones to enhance the access of exogenous nucleases to DNA. In addition, we find that in Cf sputum NE is predominantly bound to DNA, which is known to downregulate its proteolytic activity and may restrict host tissue damage. The beneficial role of NE in CF sputum solubilization may have important implications for the development of CF therapies targeting NE.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/enzimologia , Desoxirribonucleases/uso terapêutico , Elastase de Leucócito/metabolismo , Escarro/enzimologia , Adulto , DNA/metabolismo , Espaço Extracelular/metabolismo , Histonas/metabolismo , Humanos , Modelos Biológicos , Neutrófilos/enzimologia , Peroxidase/metabolismo , Solubilidade
17.
Mol Microbiol ; 81(5): 1330-42, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21777301

RESUMO

Polymorphonuclear neutrophil leucocytes (PMNs) are a critical part of innate immune defence against bacterial pathogens, and only a limited subset of microbes can escape killing by these phagocytic cells. Here we show that Neisseria meningitidis, a leading cause of septicaemia and meningitis, can avoid killing by PMNs and this is dependent on the ability of the bacterium to acquire L-glutamate through its GltT uptake system. We demonstrate that the uptake of available L-glutamate promotes N. meningitidis evasion of PMN reactive oxygen species produced by the oxidative burst. In the meningococcus, L-glutamate is converted to glutathione, a key molecule for maintaining intracellular redox potential, which protects the bacterium from reactive oxygen species such as hydrogen peroxide. We show that this mechanism contributes to the ability of N. meningitidis to cause bacteraemia, a critical step in the disease process during infections caused by this important human pathogen.


Assuntos
Ácido Glutâmico/metabolismo , Infecções Meningocócicas/metabolismo , Neisseria meningitidis/metabolismo , Neutrófilos/metabolismo , Explosão Respiratória , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Bacteriemia/patologia , Proteínas de Bactérias/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neisseria meningitidis/imunologia , Estresse Oxidativo/imunologia , Fagocitose/imunologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
Blood ; 116(9): 1570-3, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20495074

RESUMO

Chronic granulomatous disease (CGD) is an inherited disorder characterized by recurrent infections and deregulated inflammatory responses. CGD is caused by mutations in subunits of the NADPH oxidase, an enzyme that generates reactive oxygen species in phagocytes. To elucidate the contribution of the proinflammatory protease caspase-1 to aberrant inflammatory reactions in CGD, we analyzed cells isolated from patients with defects in the phagocyte oxidase subunits p22phox, p47phox or gp91phox. We report that mononuclear phagocytes from CGD patients activated caspase-1 and produced biologically active interleukin-1beta (IL-1beta) in response to danger signals. Notably, caspase-1 activation and IL-1beta secretion from CGD monocytes was elevated in asymptomatic patients and strongly increased in patients with noninfectious inflammatory conditions. Treatment with IL-1 receptor antagonist reduced IL-1 production in monocytes ex vivo and during medical therapy. Our results identify phagocyte oxidase defective monocytes as a source of elevated IL-1 and provide a potential therapeutic option to ameliorate inflammatory conditions associated with CGD.


Assuntos
Doença Granulomatosa Crônica/imunologia , Inflamação/imunologia , Glicoproteínas de Membrana/deficiência , NADPH Oxidases/deficiência , Fagócitos/enzimologia , Antirreumáticos/farmacologia , Caspase 1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/metabolismo , Monócitos/enzimologia , Monócitos/imunologia , Monócitos/patologia , NADPH Oxidase 2 , Fagócitos/imunologia , Fagócitos/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/metabolismo
19.
Cell Microbiol ; 12(8): 1134-43, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20331641

RESUMO

Shigella flexneri is an enteric pathogen that causes massive inflammation and destruction of the human intestinal epithelium. Neutrophils are the first cells of the innate immune system recruited to the site of infection. These cells can attack microbes by phagocytosis, Neutrophil Extracellular Trap (NET) formation and degranulation. Here, we investigated how neutrophil degranulation affects virulence and show that exposure of Shigella to granular proteins enhances infection of epithelial cells. During this process, cationic granular proteins bind to the Shigella surface causing increased adhesion which ultimately leads to hyperinvasion. This effect is mediated by changes in the surface charge, since a lipopolysaccharide (LPS) mutant with a negative surface shows enhanced hyperinvasion compared with wild-type Shigella. We propose that Shigella evolved to use host defence molecules to enhance its virulence and subvert the innate immune system.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Aderência Bacteriana , Células Epiteliais/microbiologia , Neutrófilos/imunologia , Shigella flexneri/patogenicidade , Contagem de Colônia Microbiana , Células HeLa , Humanos , Evasão da Resposta Imune , Viabilidade Microbiana , Shigella flexneri/imunologia
20.
Blood ; 114(13): 2619-22, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19541821

RESUMO

Chronic granulomatous disease (CGD) patients have impaired nicotinamide adenine dinucleotide phosphate (NADPH) oxidase function, resulting in poor antimicrobial activity of neutrophils, including the inability to generate neutrophil extracellular traps (NETs). Invasive aspergillosis is the leading cause of death in patients with CGD; it is unclear how neutrophils control Aspergillus species in healthy persons. The aim of this study was to determine whether gene therapy restores NET formation in CGD by complementation of NADPH oxidase function, and whether NETs have antimicrobial activity against Aspergillus nidulans. Here we show that reconstitution of NET formation by gene therapy in a patient with CGD restores neutrophil elimination of A nidulans conidia and hyphae and is associated with rapid cure of preexisting therapy refractory invasive pulmonary aspergillosis, underlining the role of functional NADPH oxidase in NET formation and antifungal activity.


Assuntos
Aspergilose/prevenção & controle , Quimiotaxia de Leucócito/genética , Terapia Genética , Doença Granulomatosa Crônica/terapia , Neutrófilos/fisiologia , Antifúngicos/metabolismo , Aspergilose/etiologia , Aspergilose/genética , Aspergilose/metabolismo , Aspergillus nidulans , Quimiotaxia de Leucócito/imunologia , Criança , Terapia Genética/métodos , Doença Granulomatosa Crônica/complicações , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/imunologia , Humanos , Masculino , Neutrófilos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA