Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36015239

RESUMO

Successful cell targeting depends on the controlled positioning of cell-type-specific antibodies on the nanocarrier's (NC) surface. Uncontrolled antibody immobilization results in unintended cell uptake due to Fc-mediated cell interaction. Consequently, precise immobilization of the Fc region towards the nanocarrier surface is needed with the Fab regions staying freely accessible for antigen binding. Moreover, the antibody needs to be a certain distance from the nanocarrier surface, influencing the targeting performance after formation of the biomolecular corona. This can be achieved by using PEG linker molecules. Here we demonstrate cell type-specific targeting for dendritic cells (DC) as cellular key regulators of immune responses. However, to date, dendritic cell targeting experiments using different linker lengths still need to be conducted. Consequently, we focused on the surface modification of nanocarriers with different molecular weight PEG linkers (0.65, 2, and 5 kDa), and their ability to reduce undesired cell uptake, while achieving efficient DC targeting via covalently immobilized antibodies (stealth targeting). Our findings demonstrate that the PEG linker length significantly affects active dendritic cell targeting from cell lines (DC2.4) to primary cells (BMDCs, splenocytic conventional DCs type 1 (cDC1)). While antibody-functionalized nanocarriers with a shorter PEG length (0.65 kDa) showed the best targeting in DC2.4, a longer PEG length (5 kDa) was required to specifically accumulate in BMDCs and splenocytic cDC1. Our study highlights that these crucial aspects must be considered when targeting dendritic cell subsets, which are of great importance in the fields of cancer immunotherapy and vaccine development.

2.
Cells ; 11(15)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954168

RESUMO

Cell therapy is an important new method in medicine and is being used for the treatment of an increasing number of diseases. The challenge here is the precise tracking of cells in the body and their visualization. One method to visualize cells more easily with current methods is their labeling with nanoparticles before injection. However, for a safe and sufficient cell labeling, the nanoparticles need to remain in the cell and not be exocytosed. Here, we test a glucose-PEG-coated gold nanoparticle for the use of such a cell labeling. To this end, we investigated the nanoparticle exocytosis behavior from PLX-PAD cells, a cell type currently in clinical trials as a potential therapeutic agent. We showed that the amount of exocytosed gold from the cells was influenced by the uptake time and loading amount. This observation will facilitate the safe labeling of cells with nanoparticles in the future and contribute to stem cell therapy research.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas Metálicas , Exocitose , Ouro , Células-Tronco Mesenquimais/metabolismo , Células Estromais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA