Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Physiol Neurobiol ; 323: 104229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38307440

RESUMO

This study investigated the respiratory activity in adult Wistar rats across different behavioral seizure severity induced by pentylenetetrazole (PTZ). Animals underwent surgery for electrodes implantation, allowing simultaneous EEG and diaphragm EMG (DIAEMG) recordings and the respiratory frequency and DIAEMG amplitude were measured. Seizures were acutely induced through PTZ injection and classified based on a pre-established score, with absence-like seizures (spike wave discharge (SWD) events on EEG) representing the lowest score. The respiratory activity was grouped into the different seizure severities. During absence-like and myoclonic jerk seizures, the breathing frequency decreased significantly (∼50% decrease) compared to pre- and post-ictal periods. Pronounced changes occurred with more severe seizures (clonic and tonic) with periods of apnea, especially during tonic seizures. Apnea duration was significantly higher in tonic compared to clonic seizures. Notably, during PTZ-induced tonic seizures the apnea events were marked by tonic DIAEMG contraction (tonic-phase apnea). In the majority of animals (5 out of 7) this was a fatal event in which the seizure-induced respiratory arrest preceded the asystole. In conclusion, we provide an assessment of the respiratory activity in the PTZ-induced acute seizures and showed that breathing dysfunction is more pronounced in seizures with higher severity.


Assuntos
Apneia , Pentilenotetrazol , Ratos , Animais , Pentilenotetrazol/toxicidade , Ratos Wistar , Convulsões/induzido quimicamente , Taxa Respiratória
2.
Viruses ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896826

RESUMO

Exacerbated inflammatory responses are a hallmark of severe coronavirus disease 2019 (COVID-19). Zileuton (Zi) is a selective inhibitor of 5-lipoxygenase, an enzyme involved in the production of several inflammatory/pro-resolving lipid mediators. Herein, we investigated the effect of Zi treatment in a severe acute respiratory syndrome (SARS) model. Mouse hepatitis virus (MHV)3-infected mice treated with Zi significantly improved the clinical score, weight loss, cardiopulmonary function, and survival rates compared with infected untreated animals. The protection observed in Zi-treated mice was associated with a lower inflammatory score, reduced dendritic cell-producing tumor necrosis factor (TNF), and increased neutrophil-producing interleukin (IL)-10 in the lungs three days after infection (dpi). At 5 dpi, the lungs of treated mice showed an increase in Th2-, Treg CD4+-, and Treg CD8+-producing IL-10 and reduced Th1 infiltrating cells. Furthermore, similar results were found upon Zi treatment after SARS-CoV-2 infection in transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2), significantly improving the clinical score, weight loss, and lung inflammatory score compared with untreated animals. Our data suggest that Zi protects against developing severe lung disease during SARS induced by betacoronavirus without affecting the host's capacity to deal with infection.


Assuntos
COVID-19 , Inibidores de Lipoxigenase , Humanos , Camundongos , Animais , SARS-CoV-2 , COVID-19/patologia , Pulmão , Camundongos Transgênicos , Imunidade Inata , Redução de Peso , Modelos Animais de Doenças
3.
Brain Res Bull ; 177: 64-72, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536522

RESUMO

The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic control, which integrates thermoregulation centers and sympathetic outflow to thermoeffector organs. PVN neurons express the neuronal isoform of nitric oxide synthase (nNOS) whose expression is locally upregulated by physical exercise. Thus, the aim of the present study was to evaluate the role of nNOS in the PVN in the exercise-induced hyperthermia. Seven days after surgery, male Wistar rats received bilateral intra-PVN microinjections of the selective nNOS inhibitor Nw-Propyl-L-Arginine (NPLA) or vehicle (saline) and were submitted to an acute progressive exercise session on a treadmill until fatigue. Abdominal and tail skin temperature (Tabd and Ttail, respectively) were measured, and the threshold (Hthr; °C) and sensitivity (Hsen) for heat dissipation calculated. Performance variables were also collected. During the progressive exercise protocol, all animals displayed an increase in the Tabd. However, compared to vehicle group, the microinjection of NPLA in the PVN attenuated the exercise-induced hyperthermia. There was no difference in Ttail or Hthr between NPLA and control rats. In contrast, Hsen was increased in the NPLA group compared to vehicle. In addition, heat storage was lower in NPLA-treated animals. Despite the temperature differences, inhibition of nNOS in the PVN did not affect running performance on the treadmill. These results suggest that nitrergic signaling within the PVN, under nNOS activation, drives the increase of body temperature, being necessary for the proper thermal regulatory mechanisms during progressive exercise-induced hyperthermia.


Assuntos
Hipertermia Induzida , Núcleo Hipotalâmico Paraventricular , Animais , Hipotálamo/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar
4.
Exp Physiol ; 106(9): 1992-2001, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34159656

RESUMO

NEW FINDINGS: What is the central question of this study? There is evidence that H2 S plays a role in the control of breathing: what are its actions on the ventilatory and thermoregulatory responses to hypercapnia via effects in the medullary raphe, a brainstem region that participates in the ventilatory adjustments to hypercapnia? What is the main finding and its importance? Hypercapnia increased the endogenous production of H2 S in the medullary raphe. Inhibition of endogenous H2 S attenuated the ventilatory response to hypercapnia in unanaesthetized rats, suggesting its excitatory action via the cystathionine ß-synthase-H2 S pathway in the medullary raphe. ABSTRACT: Hydrogen sulfide (H2 S) has been recently recognized as a gasotransmitter alongside carbon monoxide (CO) and nitric oxide (NO). H2 S seems to modulate the ventilatory and thermoregulatory responses to hypoxia and hypercapnia. However, the action of the H2 S in the medullary raphe (MR) on the ventilatory responses to hypercapnia remains to be elucidated. The present study aimed to assess the role of H2 S in the MR (a brainstem region that contains CO2 -sensitive cells and participates in the ventilatory adjustments to hypercapnia) in the ventilatory responses to hypercapnia in adult unanaesthetized Wistar rats. To do so, aminooxyacetic acid (AOA; a cystathionine ß-synthase (CBS) enzyme inhibitor), propargylglycine (PAG; a cystathionine γ-lyase enzyme inhibitor) and sodium sulfide (Na2 S; an H2 S donor) were microinjected into the MR. Respiratory frequency (fR ), tidal volume (VT ), ventilation ( V̇E ), oxygen consumption ( V̇O2 ) and body temperature (Tb ) were measured under normocapnic (room air) and hypercapnic (7% CO2 ) conditions. H2 S concentration within the MR was determined. Microinjection of the drugs did not affect fR , VT and V̇E during normocapnia when compared to the control group. However, the microinjection of AOA, but not PAG, attenuated fR and V̇E during hypercapnia in comparison to the vehicle group, but had no effects on Tb . In addition, we observed an increase in the endogenous production of H2 S in the MR during hypercapnia. Our findings indicate that endogenously produced H2 S in the MR plays an excitatory role in the ventilatory response to hypercapnia, acting through the CBS-H2 S pathway.


Assuntos
Sulfeto de Hidrogênio , Hipercapnia , Animais , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipercapnia/metabolismo , Bulbo/metabolismo , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar
5.
Respir Physiol Neurobiol ; 263: 38-46, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30831241

RESUMO

Hydrogen sulfide (H2S) is classically known for its toxic effects. More recently H2S has been documented as a neuromodulator. Here we investigated the central effects of aminooxyacetate (AOA; inhibitor of the H2S-synthesizing enzyme cystathionine ß-synthase, CBS) on cardiovascular, respiratory and thermoregulatory responses to hypercapnia in spontaneously hypertensive rats (SHR). To attain this goal we measured mean arterial pressure (MAP), heart rate (HR), ventilation (VE), and deep body temperature (Tb) of SHR and (normotensive) Wistar Kyoto (WKY) rats before and after microinjection of AOA (9 nmol/µL) or saline into the fourth ventricle immediately followed by 30-min hypercapnia exposure (7% inspired CO2). In saline-treated WKY rats, hypercapnia caused an increase in MAP accompanied by bradycardia, an increase in VE, and a drop in Tb. In AOA-treated WKY rats exposed to hypercapnia, the drug did not affect the increased MAP, potentiated the bradycardic response, attenuated the increased VE, and potentiated the drop in Tb. In saline-treated SHR, in comparison to the saline-treated WKY rats, hypercapnia elicited a minor, shorter-lasting increase in MAP with no changes in HR, evoked a greater increase in VE, and did not induce a drop in Tb. In AOA-treated SHR exposed to hypercapnia, the drug did not change the hypercapnia-induced cardiovascular and ventilatory responses while permitted a drop in Tb. Our findings indicate that AOA, an inhibitor of H2S production, modulates cardiorespiratory and thermoregulatory responses to hypercapnia in normotensive rats, whereas hypertension development in SHR is accompanied by suppression of the AOA effect on the cardiovascular and respiratory responses.


Assuntos
Ácido Amino-Oxiacético/farmacologia , Pressão Arterial , Regulação da Temperatura Corporal , Temperatura Corporal , Inibidores Enzimáticos/farmacologia , Frequência Cardíaca , Sulfeto de Hidrogênio/antagonistas & inibidores , Hipercapnia/fisiopatologia , Taxa Respiratória , Ácido Amino-Oxiacético/administração & dosagem , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/fisiologia , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Taxa Respiratória/efeitos dos fármacos , Taxa Respiratória/fisiologia
6.
Hypertens Res ; 41(12): 1000-1012, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30242293

RESUMO

The aim of this study is to evaluate the short-term and long-term effects elicited by carotid body removal (CBR) on ventilatory function and the development of hypertension in the offspring of malnourished rats. Wistar rats were fed a normo-protein (NP, 17% casein) or low-protein (LP, 8% casein) diet during pregnancy and lactation. At 29 days of age, the animals were submitted to CBR or a sham surgery, according to the following groups: NP-cbr, LP-cbr, NP-sham, or LP-sham. In the short-term, at 30 days of age, the respiratory frequency (RF) and immunoreactivity for Fos on the retrotrapezoid nucleus (RTN; brainstem site containing CO2 sensitive neurons) after exposure to CO2 were evaluated. In the long term, at 90 days of age, arterial pressure (AP), heart rate (HR), and cardiovascular variability were evaluated. In the short term, an increase in the baseline RF (~6%), response to CO2 (~8%), and Fos in the RTN (~27%) occurred in the LP-sham group compared with the NP-sham group. Interestingly, the CBR in the LP group normalized the RF in response to CO2 as well as RTN cell activation. In the long term, CBR reduced the mean AP by ~20 mmHg in malnourished rats. The normalization of the arterial pressure was associated with a decrease in the low-frequency (LF) oscillatory component of AP (~58%) and in the sympathetic tonus to the cardiovascular system (~29%). In conclusion, carotid body inputs in malnourished offspring may be responsible for the following: (i) enhanced respiratory frequency and CO2 chemosensitivity in early life and (ii) the production of autonomic imbalance and the development of hypertension.


Assuntos
Pressão Arterial/fisiologia , Corpo Carotídeo/cirurgia , Dieta com Restrição de Proteínas , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Taxa Respiratória/fisiologia , Animais , Corpo Carotídeo/fisiopatologia , Feminino , Frequência Cardíaca/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Centro Respiratório/metabolismo , Centro Respiratório/fisiopatologia
7.
Front Physiol ; 8: 452, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713283

RESUMO

Hydrogen Sulfide (H2S) is one of three gasotransmitters that modulate excitability in the CNS. Global application of H2S donors or inhibitors of H2S synthesis to the respiratory network has suggested that inspiratory rhythm is modulated by exogenous and endogenous H2S. However, effects have been variable, which may reflect that the RTN/pFRG (retrotrapezoid nucleus, parafacial respiratory group) and the preBötzinger Complex (preBötC, critical for inspiratory rhythm generation) are differentially modulated by exogenous H2S. Importantly, site-specific modulation of respiratory nuclei by H2S means that targeted, rather than global, manipulation of respiratory nuclei is required to understand the role of H2S signaling in respiratory control. Thus, our aim was to test whether endogenous H2S, which is produced by cystathionine-ß-synthase (CBS) in the CNS, acts specifically within the preBötC to modulate inspiratory activity under basal (in vitro/in vivo) and hypoxic conditions (in vivo). Inhibition of endogenous H2S production by bath application of the CBS inhibitor, aminooxyacetic acid (AOAA, 0.1-1.0 mM) to rhythmic brainstem spinal cord (BSSC) and medullary slice preparations from newborn rats, or local application of AOAA into the preBötC (slices only) caused a dose-dependent decrease in burst frequency. Unilateral injection of AOAA into the preBötC of anesthetized, paralyzed adult rats decreased basal inspiratory burst frequency, amplitude and ventilatory output. AOAA in vivo did not affect the initial hypoxia-induced (10% O2, 5 min) increase in ventilatory output, but enhanced the secondary hypoxic respiratory depression. These data suggest that the preBötC inspiratory network receives tonic excitatory modulation from the CBS-H2S system, and that endogenous H2S attenuates the secondary hypoxic respiratory depression.

8.
Pflugers Arch ; 469(10): 1277-1286, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28660294

RESUMO

Sex hormones may influence many physiological processes. Recently, we demonstrated that hormonal fluctuations of cycling female rats do not affect respiratory parameters during hypercapnia. However, it is still unclear whether sex hormones and hormonal fluctuations that occur during the estrous cycle can affect breathing during a hypoxic challenge. Our study aimed to evaluate respiratory, metabolic, and thermal responses to hypoxia in female rats on different days of the estrous cycle (proestrus, estrus, metestrus, and diestrus) and in ovariectomized rats that received replacement with oil (OVX), estradiol (OVX + E2), or a combination of estradiol and progesterone (OVX + E2P). Ventilation (V E), tidal volume (V T), respiratory frequency (fR), oxygen consumption (VO2), and V E/VO2 were not different during the estrous cycle in normoxia or hypoxia. Body temperature (Tb) was higher during estrus, but decreased similarly in all groups during hypoxia. Compared with intact females in estrus, gonadectomized rats also had lower Tb in normoxia, but not in hypoxia. OVX rats experienced a significant drop in the ventilatory response to hypoxia, but hormonal replacement did not restore values to the levels of an intact animal. Our data demonstrate that the different phases of the estrous cycle do not alter ventilation during normoxia and hypoxia, but OVX animals display lower ventilatory responses to hypoxia compared with ovary-intact rats. Because estradiol and progesterone replacement did not cause significant differences in ventilation, our findings suggest that a yet-to-be-defined non-steroidal ovarian hormone is likely to stimulate the ventilatory responses to hypoxia in females.


Assuntos
Ciclo Estral/fisiologia , Hormônios Gonadais/metabolismo , Hipercapnia/metabolismo , Hipóxia/metabolismo , Animais , Temperatura Corporal/fisiologia , Estradiol/metabolismo , Feminino , Ovariectomia/efeitos adversos , Consumo de Oxigênio/fisiologia , Ratos Wistar
9.
Artigo em Inglês | MEDLINE | ID: mdl-28263885

RESUMO

The South American lungfish Lepidosiren paradoxa is an obligatory air-breathing fish possessing well-developed bilateral lungs, and undergoing seasonal changes in its habitat, including temperature changes. In the present study we aimed to evaluate gas exchange and pulmonary breathing pattern in L. paradoxa at different temperatures (25 and 30°C) and different inspired O2 levels (21, 12, 10, and 7%). Normoxic breathing pattern consisted of isolated ventilatory cycles composed of an expiration followed by 2.4±0.2 buccal inspirations. Both expiratory and inspiratory tidal volumes reached a maximum of about 35mlkg-1, indicating that L. paradoxa is able to exchange nearly all of its lung air in a single ventilatory cycle. At both temperatures, hypoxia caused a significant increase in pulmonary ventilation (V̇E), mainly due to an increase in respiratory frequency. Durations of the ventilatory cycle and expiratory and inspiratory tidal volumes were not significantly affected by hypoxia. Expiratory time (but not inspiratory) was significantly shorter at 30°C and at all O2 levels. While a small change in oxygen consumption (V̇O2) could be noticed, the carbon dioxide release (V̇CO2, P=0.0003) and air convection requirement (V̇E/V̇O2, P=0.0001) were significantly affected by hypoxia (7% O2) at both temperatures, when compared to normoxia, and pulmonary diffusion capacity increased about four-fold due to hypoxic exposure. These data highlight important features of the respiratory system of L. paradoxa, capable of matching O2 demand and supply under different environmental change, as well as help to understand the evolution of air breathing in lungfish.


Assuntos
Pulmão/fisiologia , Consumo de Oxigênio/fisiologia , Respiração , Animais , Peixes , Hipóxia , Oxigênio/metabolismo , Troca Gasosa Pulmonar/fisiologia
10.
J Therm Biol ; 63: 112-118, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28010808

RESUMO

The South American lungfish, Lepidosiren paradoxa inhabits seasonal environments in the Central Amazon and Paraná-Paraguay basins that undergo significant oscillations in temperature throughout the year. They rely on different gas exchange organs, such as gills and skin for aquatic gas exchange while their truly bilateral lungs are responsible for aerial gas exchange; however, there are no data available on the individual contributions of the skin and the gills to total aquatic gas exchange in L. paradoxa. Thus, in the present study we quantify the relative contributions of skin and gills on total aquatic gas exchange during warm (35°C) and cold exposure (20°C) in addition to the effects of aerial and aquatic hypercarbia on aquatic gas exchange and gill ventilation rate (fG; 25°C), respectively. Elevated temperature (35°C) caused a significant increase in the contribution of cutaneous (from 0.61±0.13 to 1.34±0.26ml. STPD.h-1kg-1) and branchial (from 0.54±0.17 to 1.73±0.53ml. STPD.h-1kg-1) gas exchange for V̇CO2 relative to the lower temperature (20°C), while V̇O2 remained relatively unchanged. L. paradoxa exhibited a greater branchial contribution in relation to total aquatic gas exchange at lower temperatures (20 and 25°C) for oxygen uptake. Aerial hypercarbia decreased branchial V̇O2 whereas branchial V̇CO2 was significantly increased. Progressive increases in aquatic hypercarbia did not affect fG. This response is in contrast to increases in pulmonary ventilation that may offset any increase in arterial partial pressure of CO2 owing to CO2 loading through the animals' branchial surface. Thus, despite their reduced contribution to total gas exchange, cutaneous and branchial gas exchange in L. paradoxa can be significantly affected by temperature and aerial hypercarbia.


Assuntos
Dióxido de Carbono/metabolismo , Peixes/metabolismo , Brânquias/metabolismo , Temperatura Alta , Transporte Respiratório , Pele/metabolismo , Animais , Peixes/fisiologia , Brânquias/fisiologia , Oxigênio/metabolismo , Fenômenos Fisiológicos da Pele
11.
J Appl Physiol (1985) ; 119(1): 61-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25930026

RESUMO

The aim of this study was to examine how estrous cycle, ovariectomy, and hormonal replacement affect the respiratory [ventilation (V̇e), tidal volume, and respiratory frequency], metabolic (V̇o2), and thermoregulatory (body temperature) responses to hypercapnia (7% CO2) in female Wistar rats. The parameters were measured in rats during different phases of the estrous cycle, and also in ovariectomized (OVX) rats supplemented with 17ß-estradiol (OVX+E2), with a combination of E2 and progesterone (OVX+E2P), or with corn oil (OVX+O, vehicle). All experiments were conducted on day 8 after ovariectomy. The intact animals did not present alterations during normocapnia or under hypercapnia in V̇e, tidal volume, respiratory frequency, V̇o2, and V̇e/V̇o2 in the different phases of the estrous cycle. However, body temperature was higher in female rats on estrus. Hormonal replacement did not change the ventilatory, thermoregulatory, or metabolic parameters during hypercapnia, compared with the OVX animals. Nevertheless, OVX+E2, OVX+E2P, and OVX+O presented lower hypercapnic ventilatory responses compared with intact females on the day of estrus. Also, rats in estrus showed higher V̇e and V̇e/V̇o2 during hypercapnia than OVX animals. The data suggest that other gonadal factors, besides E2 and P, are possibly involved in these responses.


Assuntos
Regulação da Temperatura Corporal , Ciclo Estral , Terapia de Reposição Hormonal , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Ovariectomia , Mecânica Respiratória , Animais , Dióxido de Carbono/sangue , Estradiol/sangue , Estradiol/farmacologia , Feminino , Consumo de Oxigênio , Progesterona/sangue , Progesterona/farmacologia , Ratos , Ratos Wistar , Volume de Ventilação Pulmonar/efeitos dos fármacos , Vagina/citologia , Vagina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA