Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Peptides ; 171: 171094, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37696437

RESUMO

OBJECTIVE: Pressure overload can result in significant changes to the structure of blood vessels, a process known as vascular remodeling. High levels of tension can cause vascular inflammation, fibrosis, and structural alterations to the vascular wall. Prior research from our team has demonstrated that the oral administration of alamandine can promote vasculoprotective effects in mice aorta that have undergone transverse aortic constriction (TAC). Furthermore, changes in local hemodynamics can affect the right and left carotid arteries differently after TAC. Thus, in this study, we aimed to assess the effects of alamandine treatment on right carotid remodeling and the expression of oxidative stress-related substances induced by TAC. METHODS AND RESULTS: Male C57BL/6 mice were categorized into three groups: Sham, TAC, and TAC treated with alamandine (TAC+ALA). Alamandine treatment was administered orally by gavage (30 µg/kg/day), starting three days before the surgery, and continuing for a period of fourteen days. Morphometric analysis of hematoxylin and eosin-stained sections revealed that TAC induced hypertrophic and positive remodeling in the right carotid artery. Picrosirius Red staining also demonstrated an increase in total collagen deposition in the right carotid artery due to TAC-induced vascular changes. Alamandine treatment effectively prevented the increase in reactive oxygen species production and depletion of nitric oxide levels, which were induced by TAC. Finally, alamandine treatment was also shown to prevent the increased expression of nuclear factor erythroid 2-related factor 2 and 3-nitrotyrosine that were induced by TAC. CONCLUSION: Our results suggest that alamandine can effectively attenuate pathophysiological stress in the right carotid artery of animals subjected to TAC.


Assuntos
Artérias Carótidas , Estresse Oxidativo , Masculino , Camundongos , Animais , Constrição , Camundongos Endogâmicos C57BL , Artérias Carótidas/cirurgia , Remodelação Ventricular , Modelos Animais de Doenças
2.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159221

RESUMO

Background: Atherosclerosis is a chronic inflammatory disease where macrophages participate in the progression of the disease. However, the role of resident-like macrophages (res-like) in the atherosclerotic aorta is not completely understood. Methods: A single-cell RNA sequencing analysis of CD45+ leukocytes in the atherosclerotic aorta of apolipoprotein E-deficient (Apoe-/-) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the side-to-specific predisposition to atherosclerosis, was performed. A population of res-like macrophages expressing hyaluronan receptor LYVE-1 was investigated via flow cytometry, co-culture experiments, and immunofluorescence in human atherosclerotic plaques from carotid artery disease patients (CAD). Results: We identified 12 principal leukocyte clusters with distinct atherosclerosis disease-relevant gene expression signatures. LYVE-1+ res-like macrophages, expressing a high level of CC motif chemokine ligand 24 (CCL24, eotaxin-2), expanded under hypercholesteremia in Apoe-/- mice and promoted VSMC phenotypic modulation to osteoblast/chondrocyte-like cells, ex vivo, in a CCL24-dependent manner. Moreover, the abundance of LYVE-1+CCL24+ macrophages and elevated systemic levels of CCL24 were associated with vascular calcification and CAD events. Conclusions: LYVE-1 res-like macrophages, via the secretion of CCL24, promote the transdifferentiation of VSMC to osteogenic-like cells with a possible role in vascular calcification and likely a detrimental role in atherosclerotic plaque destabilization.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Receptores de Hialuronatos , Hipercolesterolemia , Placa Aterosclerótica , Calcificação Vascular , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Doenças das Artérias Carótidas/metabolismo , Quimiocina CCL24 , Colesterol/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Hipercolesterolemia/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , RNA-Seq , Calcificação Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008765

RESUMO

(1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch. (3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4 and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1ß secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1ß in phenotypically modified VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke. (4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in atherosclerotic plaque stability in human atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Inflamassomos/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aterosclerose/complicações , Aterosclerose/genética , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Transdiferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/patologia , Interleucina-1beta/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 320(1): H352-H363, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124885

RESUMO

Alamandine is the newest identified peptide of the renin-angiotensin system (RAS) and has protective effects in the cardiovascular system. Although the involvement of classical RAS components in the genesis and progression of cardiac remodeling is well known, less is known about the effects of alamandine. Therefore, in the present study we investigated the effects of alamandine on cardiac remodeling induced by transverse aortic constriction (TAC) in mice. Male mice (C57BL/6), 10-12 wk of age, were divided into three groups: sham operated, TAC, and TAC + ALA (30 µg/kg/day alamandine for 14 days). The TAC surgery was performed under ketamine and xylazine anesthesia. At the end of treatment, the animals were submitted to echocardiographic examination and subsequently euthanized for tissue collection. TAC induced myocyte hypertrophy, collagen deposition, and the expression of matrix metalloproteinase (MMP)-2 and transforming growth factor (TGF)-ß in the left ventricle. These markers of cardiac remodeling were reduced by oral treatment with alamandine. Western blotting analysis showed that alamandine prevents the increase in ERK1/2 phosphorylation and reverts the decrease in 5'-adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation induced by TAC. Although both TAC and TAC + ALA increased SERCA2 expression, the phosphorylation of phospholamban in the Thr17 residue was increased solely in the alamandine-treated group. The echocardiographic data showed that there are no functional or morphological alterations after 2 wk of TAC. Alamandine treatment prevents myocyte hypertrophy and cardiac fibrosis induced by TAC. Our results reinforce the cardioprotective role of alamandine and highlight its therapeutic potential for treating heart diseases related to pressure overload conditions.NEW & NOTEWORTHY Alamandine is the newest identified component of the renin-angiotensin system protective arm. Considering the beneficial effects already described so far, alamandine is a promising target for cardiovascular disease treatment. We demonstrated for the first time that alamandine improves many aspects of cardiac remodeling induced by pressure overload, including cell hypertrophy, fibrosis, and oxidative stress markers.


Assuntos
Fármacos Cardiovasculares/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/prevenção & controle , Oligopeptídeos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Ligadura , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
5.
Mediators Inflamm ; 2019: 2401081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918468

RESUMO

The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1ß transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.


Assuntos
Angiotensina I/farmacologia , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Células Cultivadas , Interleucina-4/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
Clin Sci (Lond) ; 133(5): 629-643, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737255

RESUMO

Aims: The renin-angiotensin system (RAS) plays an important role in the pathophysiology of vascular diseases, especially as a mediator of inflammation and tissue remodelling. Alamandine (Ala1-angiotensin-(1-7)) is a new biologically active peptide from the RAS, interacting with Mas-related G-protein-coupled receptor member D. Although a growing number of studies reveal the cardioprotective effects of alamandine, there is a paucity of data on its participation in vascular remodelling associated events. In the present study, we investigated the effects of alamandine on ascending aorta remodelling after transverse aortic constriction (TAC) in mice. Methods and results: C57BL/6J male mice were divided into the following groups: Sham (sham-operated), TAC (operated) and TAC+ALA (operated and treated with alamandine-HPßCD (2-Hydroxypropyl-ß-cyclodextrin), 30 µg/kg/day, by gavage). Oral administration of alamandine for 14 days attenuated arterial remodelling by decreasing ascending aorta media layer thickness and the cells density in the adventitia induced by TAC. Alamandine administration attenuated ascending aorta fibrosis induced by TAC, through a reduction in the following parameters; total collagen deposition, expression collagen III and transforming growth factor-ß (TGF-ß) transcripts, matrix metalloproteinases (MMPs) activity and vascular expression of MMP-2. Importantly, alamandine decreased vascular expression of proinflammatory genes as CCL2, tumour necrosis factor α (TNF-α) and interleukin-1ß (IL-1ß), and was able to increase expression of MRC1 and FIZZ1, pro-resolution markers, after TAC surgery. Conclusion: Alamandine treatment attenuates vascular remodelling after TAC, at least in part, through anti-fibrotic and anti-inflammatory effects. Hence, this work opens new avenues for the use of this heptapeptide also as a therapeutic target for vascular disease.


Assuntos
Anti-Inflamatórios/farmacologia , Aorta Torácica/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Oligopeptídeos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Mediadores da Inflamação/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Clin Sci (Lond) ; 131(10): 1015-1026, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28360194

RESUMO

Recently, H2O2 has been identified as the endothelium-dependent hyperpolarizing factor (EDHF), which mediates flow-induced dilation in human coronary arteries. Neuronal nitric oxide synthase (nNOS) is expressed in the cardiovascular system and, besides NO, generates H2O2 The role of nNOS-derived H2O2 in human vessels is so far unknown. The present study was aimed at investigating the relevance of nNOS/H2O2 signaling in the human internal mammary artery (IMA) and saphenous vein (SV), the major conduits used in coronary artery bypass grafting. In the IMA, but not in the SV, ACh (acetylcholine)-induced vasodilatation was decreased by selective nNOS inhibition with TRIM or Inhibitor 1, and by catalase, which specifically decomposes H2O2 Superoxide dismutase (SOD), which generates H2O2 from superoxide, decreased the vasodilator effect of ACh on SV. In the IMA, SOD diminished phenylephrine-induced contraction in endothelium-containing, but not in endothelium-denuded vessels. Importantly, while exogenous H2O2 produced vasodilatation in IMA, it constricted SV. ACh increased H2O2 production in both sets of vessels. In the IMA, the increase in H2O2 was inhibited by catalase and nNOS blockade. In SV, H2O2 production was abolished by catalase and reduced by nNOS inhibition. Immunofluorescence experiments showed the presence of nNOS in the vascular endothelium and smooth muscle cells of both the IMA and SV. Together, our results clearly show that H2O2 induced endothelium-dependent vascular relaxation in the IMA, whereas, in the SV, H2O2 was a vasoconstrictor. Thus, H2O2 produced in the coronary circulation may contribute to the susceptibility to accelerated atherosclerosis and progressive failure of the SV used as autogenous graft in coronary bypass surgery.


Assuntos
Vasos Coronários/metabolismo , Peróxido de Hidrogênio/metabolismo , Artéria Torácica Interna/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Veia Safena/metabolismo , Idoso , Ponte de Artéria Coronária , Vasos Coronários/cirurgia , Feminino , Humanos , Masculino , Artéria Torácica Interna/cirurgia , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Veia Safena/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA