Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; : 1-17, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865103

RESUMO

Microcystis aeruginosa is one of the most predominant freshwater bloom-forming cyanobacterium found globally which is capable of producing toxic secondary metabolites including microcystins that might intoxicate animals and humans when contaminated water or food is ingested. Salvinia auriculata Aubl is one of the plants that might possess bioactive compounds capable of controlling growth and reproduction of M. aeruginosa. The present study aimed to determine the presence of bioactive compounds in S. auriculata extracts and determine alterations occurred in growth and reproduction of M. aeruginosa when exposed to these plant extracts. In addition, this investigation aimed to examine the influence of S. auriculata on antioxidant enzymes detected in M. aeruginosa. The results obtained demonstrated that the aqueous and ethanolic extracts of S. auriculata presented potential for control of cyanobacteria populations, exhibiting algicidal action on M. aeruginosa as well as interfering in antioxidant enzymes activities and parameters associated with oxidative stress. Phytochemical analyses demonstrated the presence of polyphenols and flavonoids content in both extracts. In addition, application of S. auriculata extracts did not produce cytogenotoxicity and/or mutagenicity utilizing Allium cepa test. Therefore, further studies are needed in order to identify and characterize the compounds responsible for these effects on M. aeruginosa and provide information regarding the possible application of S. auriculata in the treatment of drinking water.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38739268

RESUMO

Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 µM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 µM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.

3.
J Integr Med ; 20(2): 153-162, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34996732

RESUMO

OBJECTIVE: The present study investigated antiglycation and antioxidant activities of crude dry extract and saponin fraction of Tribulus terrestris. It also developed a method of microencapsulation and evaluated antiglycation and antioxidant activities of crude dry extract and saponin fraction before and after microcapsule release. METHODS: Antiglycation activity was determined by relative electrophoretic mobility (REM), free amino groups and inhibition of advanced glycation end-product (AGE) formation. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion-reducing antioxidant power (FRAP), nitric oxide (NO) and thiobarbituric acid reactive species (TBARS) tests. Microcapsules were prepared using maltodextrin as wall material and freeze-drying as encapsulation technique. Morphological characterization of microcapsules was evaluated by scanning electron microscopy, and encapsulation efficiency and microcapsule release were determined by total saponins released. Antiglycation and antioxidant assays were performed using crude dry extract and saponin fraction of T. terrestris before and after release. RESULTS: Saponin fraction showed an increase of 32.8% total saponins. High-performance liquid chromatography-mass spectrometry analysis showed the presence of saponins in the obtained fraction. Antiglycation evaluation by REM demonstrated that samples before and after release presented antiglycation activity similar to bovine serum albumin treated with aminoguanidine. Additionally, samples inhibited AGE formation, highlighting treatment with saponin fraction after release (89.89%). Antioxidant tests demonstrated antioxidant activity of the samples. Crude dry extract before encapsulation presented the highest activities in DPPH (92.00%) and TBARS (32.49%) assays. Saponin fraction before encapsulation in FRAP test (499 µmol Trolox equivalent per gram of dry sample) and NO test (15.13 µmol nitrite formed per gram of extract) presented the highest activities. CONCLUSION: This study presented antiglycation activity of crude dry extract and saponin fraction of T. terrestris, besides it demonstrated promising antioxidant properties. It also showed that the encapsulation method was efficient and maintained biological activity of bioactive compounds after microcapsule release. These results provide information for further studies on antidiabetic and antiaging potential, and data for new herbal medicine and food supplement formulations containing microcapsules with crude extract and/or saponin fraction of T. terrestris.


Assuntos
Saponinas , Tribulus , Antioxidantes/química , Cápsulas , Misturas Complexas , Produtos Finais de Glicação Avançada , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saponinas/análise , Saponinas/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico
4.
Avicenna J Phytomed ; 11(3): 224-237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046319

RESUMO

OBJECTIVE: Investigation of the antiglycation and antitumoral potential of standardized and saponins-enriched extracts of Tribulus terrestris herbal medicine. MATERIALS AND METHODS: The procedures for the evaluation of the antiglycation activity of the standardized (TtSE) and saponins-enriched (TtEE) extracts of T. terrestris were: determination of relative mobility in electrophoresis (RME), free amino groups using OPA method and advanced glycation end-products (AGEs) fluorescence. Antioxidant activity was determined by DPPH radical scavenging test. In vitro antitumor activity of TtSE and TtEE was evaluated in human tumor cell lines. RESULTS: The results were obtained by antiglycation tests (RME, OPA method and AGEs fluorescence determination), using BSA as protein and ribose as glycation agent, and antioxidant assay (DPPH test); it was verified that both extracts of T. terrestris have antiglycation and antioxidant activity. In addition, the extracts were able to induce death of more than 50% of human tumor cell lines. CONCLUSION: The present study showed that standardized and saponins-enriched extracts of T. terrestris herbal medicine present antiglycation and antioxidant and antiproliferative action in human tumor cells lines. The saponins-enriched extract proved a greater antiglycation and antioxidant activity in comparison to the standardized type.

5.
Nat Prod Res ; 32(9): 1109-1117, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28956460

RESUMO

Plants endue a key role against illnesses caused by oxidative stress. These attributes are frequently associated with polyphenolic compounds. However, presence and concentration of secondary metabolites are affected by abiotic factors. The in vitro culture techniques can solve these drawbacks. Peppers can be a suitable alternative to obtain polyphenols. Aiming to optimise the callus culture stage from Capsicum baccatum to produce polyphenols, this work evaluated systemically the effects of the explant's origin (root, hypocotyl and cotyledon), growth hormone type (2,4-dichlorophenoxyacetic acid (2,4-D), benzylaminopurine (BAP) and a combination of 2,4-D/BAP at five-to-one ratio) and concentration (0.023-10.000 mg L-1) on callus culture efficiency parameters using a multilevel factorial design. The root explant in combination with BAP at 1.138 mg L-1 ensured the optimal values of the assessed responses; ​callus mass (225.03 mg), antioxidant activity (35.95%), total phenols (11.48 mg of GAE/g DE) and flavonoids (15.92 mg of RU/g DE) production.


Assuntos
Antioxidantes/farmacologia , Capsicum/citologia , Modelos Estatísticos , Técnicas de Cultura de Tecidos/métodos , Ácido 2,4-Diclorofenoxiacético/farmacologia , Antioxidantes/química , Compostos de Benzil/farmacologia , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Flavonoides/metabolismo , Hipocótilo/citologia , Fenóis/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/citologia , Polifenóis/farmacologia , Purinas/farmacologia , Metabolismo Secundário , Técnicas de Cultura de Tecidos/estatística & dados numéricos
6.
Sci Total Environ ; 599-600: 1837-1847, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28545210

RESUMO

The eutrophication of aquatic ecosystems is a serious environmental problem that leads to increased frequency of cyanobacterial blooms and concentrations of cyanotoxins. These changes in aquatic chemistry can negatively affect animal and human health. Environment-friendly methods are needed to control bloom forming cyanobacteria. We investigated the effect of Hordeum vulgare L. (barley) straw degradation extract and its fractions on the growth, oxidative stress, antioxidant enzyme activities, and microcystins content of Microcystis aeruginosa (Kützing) Kützing BCCUSP232. Exposure to the extract significantly (p<0.05) inhibited the growth of M. aeruginosa throughout the study, whereas only the highest concentration of fractions 1 and 2 significantly (p<0.05) reduced the growth of the cyanobacterium on day 10 of the experiment. The production of reactive oxygen species (ROS), lipid peroxidation and antioxidant enzyme activities were significantly (p<0.05) altered by the extract and fractions 1 and 2. Phytochemical profiling of the extract and its fractions revealed that the barley straw degradation process yielded predominantly phenolic acids. These results demonstrate that barley straw extract and its fractions can efficiently interfere with the growth and development of M. aeruginosa under laboratory conditions.


Assuntos
Eutrofização , Hordeum , Microcystis/crescimento & desenvolvimento , Antioxidantes/metabolismo , Peroxidação de Lipídeos , Microcistinas , Estresse Oxidativo , Caules de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA