Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 28(2): 401-418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31965938

RESUMO

Monoclonal antibodies carried in nanosystems have been extensively studied and reported as a promising tool for the treatment of various types of cancers. Monoclonal antibodies have great advantages for the treatment of cancer because their protein structure can bind to the target tissue; however, it has some challenges such as denaturation following heat exposure and extreme values of pH, temperature and solvents, the ability to undergo hydrolysis, oxidation and deamination and the formation of non-native aggregates, which compromise drug stability to a large extent. In addition to these characteristics, they suffer rapid elimination when in the blood, which results in a short half-life and the production of neutralizing antibodies, rendering the doses ineffective. These challenges are overcome with encapsulation in nanosystems (liposomes, polymer nanoparticles, cyclodextrins, solid lipid nanoparticles, nanostructured lipid carriers, dendrimers and micelles) due to the characteristics of improving solubility, permeability, and selectivity only with tumor tissue; with that, there is a decrease in side effects beyond controlled release, which is critical to improving the therapeutic efficacy of cancer treatment. The article was divided into different types of nanosystems, with a description of their definitions and applications in various types of cancers. Therefore, this review summarizes the use of monoclonal antibodies encapsulated in nanosystems and the description of clinical studies with biosimilars. Biosimilars are defined as products that are similar to monoclonal antibodies which are produced when the patent for the monoclonal antibodies expires.


Assuntos
Nanopartículas , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Medicamentos Biossimilares , Sistemas de Liberação de Medicamentos , Humanos , Micelas , Neoplasias/tratamento farmacológico
2.
Drug Deliv Transl Res ; 10(6): 1748-1763, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32924099

RESUMO

The Melaleuca alternifolia essential oil (MEO) has been widely used due to its healing and antimicrobial action. Its incorporation into drug delivery systems is a reality, and numerous studies have already been developed for this purpose. In this regard, the aim of this work was to develop, characterize, and evaluate the in vivo pharmacological activity of bicontinuous microemulsions (BME) containing MEO. Through diagram construction, a formulation consisting of Kolliphor® HS 15 (31.05%), Span® 80 (3.45%), isopropyl myristate (34.5%), and distilled water (31%) was selected and MEO was incorporated in the proportion of 3.45% (v/v). Morphological analysis characterization confirms that the system studied herein is a BME. The evaluated formulation showed physicochemical characteristics that allow its topical use. Rheologically, samples were characterized as pseudo-plastic non-Newtonian thixotropic fluids. The chromatographic method developed is in accordance with the current recommendations. The extraction method used assured a 100% recovery of the pharmacological marker (terpinen-4-ol). In vivo studies suggest that BME loaded with MEO may contribute to the healing process of skin wounds. In addition, it demonstrated antibacterial activity for Gram-positive and Gram-negative bacteria. Therefore, the BME system loaded with MEO is promising as a healing and antimicrobial agent for skin wounds.Graphical abstract.


Assuntos
Antibacterianos , Melaleuca , Óleo de Melaleuca , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Melaleuca/química , Óleo de Melaleuca/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA