Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protein Pept Sci ; 25(1): 12-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37653631

RESUMO

Glioblastoma multiforme (GBM) is the most common type of cancer that affects the central nervous system (CNS). It currently accounts for about 2% of diagnosed malignant tumors worldwide, with 296,000 new cases reported per year. The first-choice treatment consists of surgical resection, radiotherapy, and adjuvant chemotherapy, which increases patients' survival by 15 months. New clinical and pre-clinical research aims to improve this prognosis by proposing the search for new drugs that effectively eliminate cancer cells, circumventing problems such as resistance to treatment. One of the promising therapeutic strategies in the treatment of GBM is the inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway, which is closely related to the process of tumor carcinogenesis. This review sought to address the main scientific studies of synthetic or natural drug prototypes that target specific therapy co-directed via the PI3K pathway, against human glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38018200

RESUMO

Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.

3.
Curr Top Med Chem ; 23(30): 2863-2876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679877

RESUMO

Cancer is responsible for high mortality rates worldwide, representing a serious health problem. In this sense, melanoma corresponds to the most aggressive type of skin cancer, being the cause of the highest death rates. Therapeutic strategies for the treatment of melanoma remain limited, with problems associated with toxicity, serious side effects, and mechanisms of resistance. The potential of natural products for the prevention and treatment of melanoma has been reported in different studies. Among these compounds, naphthoquinones (1,2-naphthoquinones and 1,4-naphthoquinones) stand out for their diverse pharmacological properties, including their antitumor activity. Thus, this review covers different studies found in the literature on the application of natural naphthoquinones targeting melanoma, providing information regarding the mechanisms of action investigated for these compounds. Finally, we believe that this review provides a comprehensive basis for the use of natural naphthoquinones against melanoma and that it may contribute to the discovery of promising compounds, specifically naphthoquinones, aimed at the treatment of this cancer.


Assuntos
Antineoplásicos , Melanoma , Naftoquinonas , Humanos , Melanoma/tratamento farmacológico , Antineoplásicos/farmacologia , Naftoquinonas/farmacologia
4.
Mini Rev Med Chem ; 23(11): 1193-1221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424359

RESUMO

Infections caused by the Hepatitis C virus (HCV) affect around 70 million people worldwide, leading to serious liver problems, such as fibrosis, steatosis, and cirrhosis, in addition to progressing to hepatocellular carcinoma and becoming globally the main cause of liver disease. Despite great therapeutic advances in obtaining pan-genotypic direct-acting antivirals (DAAs), around 5-10% of affected individuals are unable to eliminate the virus by their own immune system's activity. Still, there are no licensed vaccines so far. In this context, the orchestrated process of virus entry into host cells is a crucial step in the life cycle and the infectivity capability of most viruses. In recent years, the entry of viruses has become one of the main druggable targets used for designing effective antiviral molecules. This goal has come to be widely studied to develop pharmacotherapeutic strategies against HCV, combined or not with DAAs in multitarget approaches. Among the inhibitors found in the literature, ITX 5061 corresponds to the most effective one, with EC50 and CC50 values of 0.25 nM and >10 µM (SI: 10,000), respectively. This SRBI antagonist completed the phase I trial, constituting a promising compound against HCV. Interestingly, chlorcyclizine (an antihistamine drug) showed action both in E1 apolipoproteins (EC50 and CC50 values of 0.0331 and 25.1 µM, respectively), as well as in NPC1L1 (IC50 and CC50 values of 2.3 nM and > 15 µM, respectively). Thus, this review will discuss promising inhibitors targeting HCV entry, discussing their SAR analyzes, recent contributions, and advances in this field.


Assuntos
Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Humanos , Hepacivirus , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Hepatite C/tratamento farmacológico , Internalização do Vírus , Neoplasias Hepáticas/tratamento farmacológico
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2957-2975, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37097335

RESUMO

Trimetozine is used to be indicated for the treatment of mental illnesses, particularly anxiety. The present study provides data on the pharmacological profile of trimetozine derivative morpholine (3,5-di-tert-butyl-4-hydroxyphenyl) methanone (LQFM289) which was designed from molecular hybridization of trimetozine lead compound and 2,6-di-tert-butyl-hydroxytoluene to develop new anxiolytic drugs. Here, we conduct molecular dynamics simulations, docking studies, receptor binding assays, and in silico ADMET profiling of LQFM289 before its behavioral and biochemical assessment in mice within the dose range of 5-20 mg/kg. The docking of LQFM289 showed strong interactions with the benzodiazepine binding sites and matched well with receptor binding data. With the ADMET profile of this trimetozine derivative that predicts a high intestinal absorption and permeability to blood-brain barrier without being inhibited by the permeability glycoprotein, the oral administration of LQFM289 10 mg/kg consistently induced anxiolytic-like behavior of the mice exposed to the open field and light-dark box apparatus without eliciting motor incoordination in the wire, rotarod, and chimney tests. A decrease in the wire and rotarod´s fall latency coupled with an increase in the chimney test´s climbing time and a decrease in the number of crossings in the open field apparatus at the dose of 20 mg/kg of this trimetozine derivative suggest sedative or motor coordination impairment at this highest dose. The attenuation of the anxiolytic-like effects of LQFM289 (10 mg/kg) by flumazenil pretreatment implicates the participation of benzodiazepine binding sites. The lowering of corticosterone and tumor necrosis factor alpha (cytokine) in LQFM289-treated mice at a single oral (acute) dose of 10 mg/kg suggests that the anxiolytic-like effect of this compound also involves the recruitment of non-benzodiazepine binding sites/GABAergic molecular machinery.


Assuntos
Ansiolíticos , Camundongos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Benzodiazepinas/farmacologia , Hipnóticos e Sedativos/farmacologia , Ansiedade/tratamento farmacológico , Morfolinas/farmacologia , Comportamento Animal
6.
Fundam Clin Pharmacol ; 37(3): 619-628, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36579760

RESUMO

In the present study, we examined the antinociceptive and anti-inflammatory activities of a guanylhydrazone derivative, (E)-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-guanylhydrazone hydrochloride (LQM10), in mice. The antinociceptive effect was determined by assessing behavioural responses in different pain models, while anti-inflammatory activity was examined in carrageenan-induced pleurisy. Intraperitoneal LQM10 administration reduced the acetic acid-induced nociceptive behaviour, a phenomenon that was unaltered by pretreatment with yohimbine, atropine, naloxone or glibenclamide. In the formalin assay, LQM10 reduced nociceptive behaviour only in the second phase, indicating an inhibitory effect on inflammatory pain. LQM10 did not alter the pain latency in the hot plate assay and did not impact the locomotor activity of mice in the rotarod assay. In the carrageenan-induced pleurisy assay, LQM10 treatment inhibited critical events involved in inflammatory responses, namely, leucocyte recruitment, plasma leakage and increased inflammatory mediators (tumour necrosis factor Like Properties of Chalchones and Flavonoid Derivatives [TNF]-α and interleukin [IL]-1ß) in the pleural exudate. Overall, these results indicate that LQM10 exhibits antinociceptive effects associated with peripheral mechanisms and anti-inflammatory activity mediated via a reduction in leucocyte migration and proinflammatory mediators, rendering this compound a promising candidate for treating pain and inflammatory process.


Assuntos
Analgésicos , Pleurisia , Animais , Camundongos , Analgésicos/efeitos adversos , Carragenina , Nociceptividade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia , Pleurisia/induzido quimicamente , Pleurisia/tratamento farmacológico , Fator de Necrose Tumoral alfa , Edema/induzido quimicamente , Edema/tratamento farmacológico
7.
Drug Discov Today ; 28(3): 103468, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528280

RESUMO

The (re)emergence of multidrug-resistant viruses and the emergence of new viruses highlight the urgent and ongoing need for new antiviral agents. The use of peptidomimetics as therapeutic drugs has often been associated with advantages, such as enhanced binding affinity, improved metabolic stability, and good bioavailability profiles. The development of novel antivirals is currently driven by strategies of converting peptides into peptidomimetic derivatives. In this review, we outline different structural modification design strategies for developing novel peptidomimetics as antivirals, involving N- or C-cap terminal structure modifications, pseudopeptides, amino acid modifications, inverse-peptides, cyclization, and molecular hybridization. We also present successful recent examples of peptidomimetic designs.


Assuntos
Peptidomiméticos , Antivirais , Química Farmacêutica , Peptídeos/química
8.
Curr Med Chem ; 29(33): 5397-5419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35301943

RESUMO

Inflammation is a natural reaction to external stimuli to protect the organism. However, if it is exaggerated, it can cause severe physiopathological damage, linked to diseases like rheumatoid arthritis, cancer, diabetes, allergies, and infections. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy for developing anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. Thus, in recent years, computer-aided drug design (CADD) approaches have been increasingly used to design new inhibitors, decreasing costs and increasing the probability of discovering active substances. Finally, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, and quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.


Assuntos
Anti-Inflamatórios , Desenho de Fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dinoprostona/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Simulação de Acoplamento Molecular , Prostaglandina-E Sintases
9.
Curr Top Med Chem ; 22(18): 1485-1500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086449

RESUMO

Influenza viruses (INFV), the Orthomyxoviridae family, are mainly transmitted among humans via aerosols or droplets from the respiratory secretions. However, fomites could be a potential transmission pathway. Annually, seasonal INFV infections account for 290-650 thousand deaths worldwide. Currently, there are two classes of approved drugs to treat INFV infections, being neuraminidase (NA) inhibitors and blockers of matrix-2 (M2) ion channel. However, cases of resistance have been observed for both chemical classes, reducing the efficacy of treatment. The emergence of influenza outbreaks and pandemics calls for new antiviral molecules that are more effective, and that could overcome the current resistance to anti-influenza drugs. In this context, polyphenolic compounds are found in various plants, and these have displayed different multi-target approaches against diverse pathogens. Among these, green tea (Camellia sinensis) catechins, in special epigallocatechin-3-O-gallate (EGCG), have demonstrated significant activities against the two most relevant human INFV, subtypes A and lineages B. In this sense, EGCG has been found to be a promising multi-target agent against INFV since it can act inhibiting NA, hemagglutination (HA), RNA-dependent RNA polymerase (RdRp), and viral entry/adsorption. In general, the lack of knowledge about potential multi-target natural products prevents an adequate exploration of them, increasing the time for developing multi-target drugs. Then, this review aimed to compile most relevant studies showing the anti-INFV effects of EGCG and its derivatives, which could become antiviral drug prototypes in the future.


Assuntos
Camellia sinensis , Catequina , Infecções por Orthomyxoviridae , Orthomyxoviridae , Antivirais , Catequina/análogos & derivados , Inibidores Enzimáticos , Humanos , Chá
10.
Naunyn Schmiedebergs Arch Pharmacol ; 395(3): 275-283, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35089406

RESUMO

Coronavirus disease 2019 (COVID-19) is a potentially fatal disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that preferentially infects the respiratory tract. Bradykinin (BK) is a hypotensive substance that recently emerged as one of the mechanisms to explain COVID-19-related complications. Concerning this, in this review, we try to address the complex link between BK and pathophysiology of COVID-19, investigating the role of this peptide as a potential target for pharmacological modulation in the management of SARS-CoV-2. The pathology of COVID-19 may be more a result of the BK storm than the cytokine storm, and which BK imbalance is a relevant factor in the respiratory disorders caused by SARS-CoV-2 infection. Regarding this, an interesting point of intervention for this disease is to modulate BK signaling. Some drugs, such as icatibant, ecallantide, and noscapine, and even a human monoclonal antibody, lanadelumab, have been studied for their potential utility in COVID-19 by modulating BK signaling. The interaction of the BK pathway and the involvement of cytokines such as IL-6 and IL1 may be key to the use of blockers, even if only as adjuvants. In fact, reduction of BK, mainly DABK, is considered a relevant strategy to improve clinical conditions of COVID-19 patients. In this context, despite the current unproven clinical efficacy, drugs repurposing that block B1 or B2 receptor activation have gained prominence for the treatment of COVID-19 in the world.


Assuntos
Bradicinina/antagonistas & inibidores , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Bradicinina/fisiologia , COVID-19/etiologia , Reposicionamento de Medicamentos , Humanos , Interleucina-6/antagonistas & inibidores
11.
Expert Opin Ther Pat ; 32(12): 1175-1184, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36625031

RESUMO

INTRODUCTION: The urate transporter 1 (URAT1) is a membrane transporter located in the apical membrane of human renal proximal tubule epithelial cells, which mediates most of the reabsorption of urate. Hyperuricemia (HUA) is a common disease caused by metabolic disorders, which has been considered as the key factor of gout. Approximately 90% of patients suffer from hyperuricemia due to insufficient or poor uric acid excretion. Therefore, the drug design of URAT1 inhibitors targeting improve the renal urate excretion by reducing the reabsorption of urate anions represent a hot topic in searching for anti-gout drugs currently. AREAS COVERED: In this review, we summarize URAT1 inhibitors patents reported since 2020 to present through the public database at https://worldwide.espacenet.com and some medicinal chemistry strategies employed to develop novel drug candidates. EXPERT OPINION: Ligand-based drug design (LBDD) strategies have been frequently used developing new URAT1 inhibitors. Meanwhile, the discovery of dual drugs targeting both inhibition of xanthine oxidase (XOD) and URAT1 may be an emerging horizon for designing novel uric acid-lowering candidates in future. Furthermore, advanced techniques in the field of molecular biology and computer science can increase the chances to discover and/or optimize URAT1 inhibitors, contributing to the development of novel drug candidates.


Assuntos
Gota , Hiperuricemia , Transportadores de Ânions Orgânicos , Humanos , Hiperuricemia/tratamento farmacológico , Ácido Úrico/metabolismo , Patentes como Assunto , Proteínas de Transporte de Cátions Orgânicos
12.
Curr Med Chem ; 29(2): 189-211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33719954

RESUMO

Cancer is an uncontrolled cell growth that can generate diverse types of cancer, in which these will also present a different behavior in the face of pharmacological treatment. These cancers' types are found in one of the three categories, leukemias (also named lymphomas), carcinomas, and sarcomas. In general, cancer's pathogenesis is associated with three genetic mutations, where could emerge from oncogenes, tumor suppressor genes, and/or genes responsible for regulating DNA replication. The term "undruggable" is frequently related to the difficulty to design drugs to specific targets, such as MYC, MYB, NF-κB, and RAS family of proteins. This last comprises more than 140 proteins, and these are responsible for 30% of mutations in human cancers. Also, there are three ras genes transcribed in human cells, called H-, K-, and N-ras oncogenes. Still, the RAS proteins (farnesyltransferase (FTase) and geranylgeranyltransferase (GGTase) enzymes) perform essential steps in post-translational modification of eukaryotes cells, such as (1) the farnesylation of the cysteine residue at the C-terminal tetrapeptide CAAX; (2) proteolytic cleavage of the three C-terminal AAX oligopeptide; and (3) carboxymethylation of the new C-terminal prenylated cysteine. Thus, the inhibition of this undruggable RAS family of proteins has been considered a promising alternative to design new anticancer agents since they are responsible for many types of human cancers. Then, the manumycin A (obtained from the Streptomyces parvulus Tü64) and its analogs (epoxyquinol core with or without their southern and eastern side chains; and dihydroxycyclohexenones core) have been described as promising FTase inhibitors, which have demonstrated their benefits against several types of cancer. In this review, a complete introduction about cancer and its relation with RAS proteins is provided, as well as, the prenylation mechanism of the cysteine residue is discussed in detail. Posteriorly, studies involving manumycin-related compounds are described, showing some synthetic routes for obtaining them and utilizing these natural products in monotherapies or combined therapies with other anticancer drugs.


Assuntos
Alquil e Aril Transferases , Produtos Biológicos , Neoplasias , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase , Humanos , Neoplasias/tratamento farmacológico , Polienos , Alcamidas Poli-Insaturadas
13.
Comb Chem High Throughput Screen ; 25(14): 2317-2340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34269666

RESUMO

Inflammation is a natural process that occurs in the organism in response to harmful external agents. Despite being considered beneficial, exaggerated cases can cause severe problems for the body. The main inflammatory manifestations are pain, increased temperature, edema, decreased mobility, and quality of life for affected individuals. Diseases such as arthritis, cancer, allergies, infections, arteriosclerosis, neurodegenerative diseases, and metabolic problems are mainly characterized by an exaggerated inflammatory response. Inflammation is related to two categories of substances: pro- and anti-inflammatory mediators. Among the pro-inflammatory mediators is Tumor Necrosis Factor-α (TNF-α). It is associated with immune diseases, cancer, and psychiatric disorders which increase its excretion. Thus, it becomes a target widely used in discovering new antiinflammatory drugs. In this context, secondary metabolites biosynthesized by plants have been used for thousands of years and continue to be one of the primary sources of new drug scaffolds against inflammatory diseases. To decrease costs related to the drug discovery process, Computer-Aided Drug Design (CADD) techniques are broadly explored to increase the chances of success. In this review, the main natural compounds derived from alkaloids, flavonoids, terpene, and polyphenols as promising TNF-α inhibitors will be discussed. Finally, we applied a molecular modeling protocol involving all compounds described here, suggesting that their interactions with Tyr59, Tyr119, Tyr151, Leu57, and Gly121 residues are essential for the activity. Such findings can be useful for research groups worldwide to design new anti-inflammatory TNF-α inhibitors.


Assuntos
Anti-Inflamatórios , Inibidores do Fator de Necrose Tumoral , Humanos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Desenho de Fármacos , Inflamação/tratamento farmacológico , Inibidores do Fator de Necrose Tumoral/química , Inibidores do Fator de Necrose Tumoral/farmacologia , Metabolismo Secundário , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Plantas/química
14.
Bioorg Med Chem ; 41: 116213, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992862

RESUMO

Chagas disease and Human African Trypanosomiasis (HAT) are caused by Trypanosoma cruzi and T. brucei parasites, respectively. Cruzain (CRZ) and Rhodesain (RhD) are cysteine proteases that share 70% of identity and play vital functions in these parasites. These macromolecules represent promising targets for designing new inhibitors. In this context, 26 CRZ and 5 RhD 3D-structures were evaluated by molecular redocking to identify the most accurate one to be utilized as a target. Posteriorly, a virtual screening of a library containing 120 small natural and nature-based compounds was performed on both of them. In total, 14 naphthoquinone-based analogs were identified, synthesized, and biologically evaluated. In total, five compounds were active against RhD, being three of them also active on CRZ. A derivative of 1,4-naphthoquinonepyridin-2-ylsulfonamide was found to be the most active molecule, exhibiting IC50 values of 6.3 and 1.8 µM for CRZ and RhD, respectively. Dynamic simulations at 100 ns demonstrated good stability and do not alter the targets' structures. MM-PBSA calculations revealed that it presents a higher affinity for RhD (-25.3 Kcal mol-1) than CRZ, in which van der Waals interactions were more relevant. A mechanistic hypothesis (via C3-Michael-addition reaction) involving a covalent mode of inhibition for this compound towards RhD was investigated by covalent molecular docking and DFT B3LYP/6-31 + G* calculations, exhibiting a low activation energy (ΔG‡) and providing a stable product (ΔG), with values of 7.78 and - 39.72 Kcal mol-1, respectively; similar to data found in the literature. Nevertheless, a reversibility assay by dilution revealed that JN-11 is a time-dependent and reversible inhibitor. Finally, this study applies modern computer-aided techniques to identify promising inhibitors from a well-known chemical class of natural products. Then, this work could inspire other future studies in the field, being useful for designing potent naphthoquinones as RhD inhibitors.


Assuntos
Desenho Assistido por Computador , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Desenho de Fármacos , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , 1-Naftilamina/análogos & derivados , Aminoquinolinas , Inibidores de Cisteína Proteinase/química , Descoberta de Drogas , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
15.
Curr Top Med Chem ; 21(21): 1871-1899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33797369

RESUMO

Neglected tropical diseases (NTDs) are a group of approximately 20 diseases that affect part of the population in Sub- and Tropical countries. In the past, pharmaceutical industries and governmental agencies have invested in the control, elimination and eradication of such diseases. Among these diseases, Chagas disease (CD) and Human African trypanosomiasis (HAT) are a public health problem, mainly in the countries from the American continent and sub-Saharan African. In this context, the search for new therapeutic alternatives against such diseases has been growing in recent years, presenting cysteine proteases as the main strategy to discover new anti-trypanosomal drugs. Thus, cruzain and rhodesain enzymes are targets widely studied, since the cruzain is present in all stages of the parasite's life, related to the stages of proliferation and differentiation and infection of macrophages; while the rhodesain is related to the immune defense process. In addition, knowledge about the amino acid sequences and availability of X-ray complexes have stimulated the drug searching against these targets, mainly through molecular modeling studies. Thus, this review manuscript will be addressed to cruzain and rhodesain inhibitors developed in the last 10 years, which could provide basis for new lead compounds in the discovery of new trypanocidal drugs. We found 117 studies involving inhibitors of cruzain and rhodesain, being thiosemicarbazones, semicarbazones, N-acylhydrazones, thiazoles-hydrazone, thiazolidinones-hydrazones, oxadiazoles, triazoles, triazines, imidazoles, peptidomimetic, and others. All references were obtained using "cruzain" or "rhodesain" and "inhibitor" as keywords in Science Direct, Bentham Science, PubMed, Espacenet, Springer, ACS Publisher, Wiley, Taylor and Francis, and MDPI (Multidisciplinary Digital Publishing Institute) databases. Finally, we highlighted all these chemical classes of molecules to provide valuable information that could be used to design new inhibitors against Chagas disease and sleeping sickness in the future.


Assuntos
Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Animais , Humanos
16.
Curr Top Med Chem ; 20(19): 1677-1703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32515312

RESUMO

Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Desenho Assistido por Computador , Cumarínicos/farmacologia , Flavonoides/farmacologia , Neoplasias/tratamento farmacológico , Alcaloides/química , Alcaloides/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Cumarínicos/química , Cumarínicos/metabolismo , Desenho de Fármacos , Flavonoides/química , Flavonoides/metabolismo , Humanos , Estrutura Molecular
17.
Bioorg Med Chem ; 27(18): 3963-3978, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351847

RESUMO

Currently, more than 70 flaviviruses were identified and reported in the literature, whose Dengue (DENV), Zika (ZIKV), and West Nile (WNV) viruses have been responsible for millions of cases of infections worldwide, mainly in developing countries. These viruses are transmitted by the bite of mosquitoes from genus Aedes, or Culex and, in some cases, Stegomyia. Despite numerous efforts to identify a selective, safe, and effective antiviral agent, there is no currently approved drug for the treatment of flaviviral infections. Then, current pharmacological therapy has the objective to treat the clinical symptoms. Various peptidomimetics and peptide-derivatives have been synthesized and evaluated against several biological targets from flaviviruses with different applications, such as diagnosis, E protein inhibitors, entry inhibitors, virucidal inhibitors, and also viral replication inhibitors. Flaviviral replication depends on the NS3pro that is completely activated when it is complexed to its cofactor, NS2B; forming a viral enzymatic complex. The development of NS2B-NS3pro inhibitors is considered a challenging work due to its active site is shallow and open-pocket. In this work, we report all advances involving peptidomimetics, peptide-derived, and peptide-hybrids found in the literature. In sense, we discuss the influence of different functional groups in the activity and selectivity. Moreover, the first inhibitors reported in the literature as covalent ligands, comprising two basic residues followed by an electrophilic moiety that binds to the catalytic serine (Ser135-O-) are also discussed in details, such as trifluoromethyl ketones, aldehydes, and boronic acids. Furthermore, it is presented the influence of introducing transition metals, providing metallopeptide inhibitors; and cyclization of linear peptides, generating cyclic and macrocyclic peptide inhibitors. Finally, we provide the most accurate state of the art found in the literature, which can be utilized to design new and effective antiviral agents.


Assuntos
Dengue/tratamento farmacológico , Flavivirus/efeitos dos fármacos , Peptídeos/uso terapêutico , Inibidores de Proteases/uso terapêutico , Vírus do Nilo Ocidental/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Humanos , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia
18.
Curr Top Med Chem ; 19(13): 1075-1091, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223089

RESUMO

BACKGROUND: Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity. OBJECTIVE: Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives. METHODS: Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling). RESULTS: Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode. CONCLUSION: Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Nitrocompostos/farmacologia , Tiofenos/farmacologia , Tiossemicarbazonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Adulto , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Nitrocompostos/síntese química , Nitrocompostos/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
19.
Biosens Bioelectron ; 133: 160-168, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30933710

RESUMO

An efficient and new electrochemical biosensor for detection of DNA damage, induced by the interaction of the hybrid anti-cancer compound (7ESTAC01) with DNA, was studied by differential pulse voltammetry (DPV). The biosensor consists of a Stem-Loop DNA (SL-DNA) probe covalently attached to the gold electrode (GE) surface that hybridizes to a complementary DNA strand (cDNA) to form a double-stranded DNA (dsDNA). The interaction and DNA damage induced by 7ESTAC01 was electrochemically studied based on the oxidation signals of the electroactive nucleic acids on the surface of the GE by DPV. As a result, the SL-DNA/GE and dsDNA/GE were tested with the reduced 7ESTAC01, showing the voltammetric signal of guanine and adenine, increase in the presence of 7ESTAC01. Under optimum conditions, the dsDNA/GE biosensor exhibited excellent DPV response in the presence of 7ESTAC01. The bonding interaction between 7ESTAC01 and calf thymus DNA (ctDNA) was confirmed by UV-Vis absorption spectroscopy, dynamic simulations (performed to investigate the DNA structure under physiological conditions), and molecular docking. Theoretical results showed the presence of hydrogen bonding and intercalation in the minor groove of DNA, involving hydrophobic interactions.


Assuntos
Antineoplásicos/química , Técnicas Biossensoriais , DNA/isolamento & purificação , Técnicas Eletroquímicas , Antineoplásicos/farmacologia , DNA/química , DNA/genética , Dano ao DNA/efeitos dos fármacos , DNA Complementar/química , DNA Complementar/genética , Ouro/química , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Sequências Repetidas Invertidas/genética , Simulação de Acoplamento Molecular , Oxirredução/efeitos dos fármacos , Raios Ultravioleta
20.
Curr Comput Aided Drug Des ; 14(1): 68-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28523999

RESUMO

BACKGROUND: Chagas' disease is one of the main causes of heart failure in developing countries. The disadvantages of current therapy include the undesirable side-effects, resistance, and therapeutic adhesion. The development of new efficient and safe drugs is, therefore, an issue of extreme importance. OBJECTIVES: In order to gain a better understanding of how the compounds interact with the target, computational methods are essential. METHODS: In this theoretical study, we report a docking protocol applied to a dataset of 173 cruzain inhibitors with IC50 values of less than 10 µM, belonging 16 different chemical classes. A preliminary analysis was performed, where the best protein structure for the study was identified. RESULTS: The enzyme was validated by redocking and a fingerprint graph for the ligand-enzyme interactions was generated, allowing the identification of the main amino acid residues related to the activity. Additionally, a larger cluster was generated, allowing the visualization of the orientation of the compounds and providing binding information for the different classes of compounds as well as their interaction in the cruzain active site. Amino acid residues other than those known as the catalytic triad (Gly23, Cys25, and Gly65) were identified, for example, Gln19 and Asp158. CONCLUSION: This provides a better insight into the mode of interaction of various cruzain inhibitors, which show IC50 values in the nanomolar range but which do not interact with the triad. These findings can help researchers to find new cruzain inhibitors for use in the fight against the Chagas disease.


Assuntos
Cisteína Endopeptidases/química , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Proteínas de Protozoários/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA