Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 113(4): 759-775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945432

RESUMO

Favolus is a monophyletic genus of polypores that causes white rot of various woody plants. The genus has a worldwide distribution and is ecologically and economically important. Several taxa have been described or reported from the Neotropics, and F. brasiliensis, described originally from Brazil, is the type species for the genus. Based on molecular investigations, F. brasiliensis is now known to represent a species complex. The species is morphologically and phylogenetically circumscribed and epitypified here, and F. rugulosus is proposed as a new related species. Favolus grammocephalus and Polyporus philippinensis, initially described from Asia, have also recently been recorded from the Neotropics, so these taxa were included in this investigation employing morphological and multigene (mitochondrial, ribosomal, and protein-coding regions) phylogenetic analyses. These latter two species do not occur in the Neotropics, but the misapplied names actually represent three new species: F. pseudogrammocephalus, F. radiatifibrillosus, and F. yanomami. Nine species of Favolus are documented now for the Neotropics. Detailed descriptions of F. brasiliensis and all new taxa are provided, along with comments, illustrations, a map of potential distribution, and a key for neotropical species of Favolus.


Assuntos
Polyporaceae , Ásia , Filogenia , Polyporus
2.
J Proteomics ; 203: 103390, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129267

RESUMO

Basidiomycotan fungi play significant roles in the biogeochemical cycle of carbon as wood decomposers and are used in the food industry for mushroom production and in biotechnology for the production of diverse bioactive compounds and bioremediation. The correct identification of basidiomycotan isolates is crucial for understanding their biology and being able to expand their applications. Currently, the identification of these organisms is performed by analyzing morphological and genomic characteristics, primarily those based on DNA biomarkers. Despite their efficiency, such methods require considerable expertise and are both time-consuming and error-prone (multistep workflow). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged in the last decade as an accurate, fast, and powerful alternative for the identification of microorganisms. MALDI-TOF MS has been widely applied for the identification and taxonomical characterization of both bacteria and ascomycotan fungi from clinical origins. However, species of Basidiomycota have been poorly evaluated using this method. In the present study, we assessed the performance of MALDI-TOF MS using basidiomycotan isolates of two distinct taxonomical families: Polyporaceae and Hymenochaetaceae. Using a simple protocol, which eliminates the protein extraction step, we obtained high-quality mass spectra data and demonstrated that this method is efficient for the discrimination of isolates at the species level. SIGNIFICANCE: In this study, the MALDI-TOF mass spectrometry was employed to test its accuracy on the recognition of fungal species with high biotechnological and environmental interest. Using a simple and fast protocol, we obtained high-quality mass-spectra (protein fingerprinting) and proved that MALDI-TOF MS is sufficiently robust to the identification at species level and to evaluate the relationships among the isolates of the polyporoid and hymenochaetoid clades (Basidiomycota).


Assuntos
Basidiomycota/isolamento & purificação , Mapeamento de Peptídeos/métodos , Proteômica/métodos , Classificação/métodos , Fungos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Mol Phylogenet Evol ; 131: 125-137, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385309

RESUMO

Biological processes such as hybridization, incomplete lineage sorting and gene flow can obscure the recognition of distinct evolutionary lineages, particularly in groups of organisms that have recently diverged. Therefore, compiling pieces of evidence from diverse data sources is critical to accurately assess species boundaries in such groups. The increasing availability of DNA sequence data allows for a much deeper understanding of diversification and speciation processes and their consequences on biodiversity. In this study, we applied an integrative approach based on DNA sequence, chemical, geographic and morphological data to attempt to define species boundaries in the lichen-forming genus Usnea (Parmeliaceae), particularly the U. cornuta aggregate, a cosmopolitan species group. We provide the first species delimitation for this group in the neotropics based on the multispecies coalescent (MSC) model. Using ITS rDNA and two protein-coding genes, Mcm7 and RPB1, we estimated the species tree under the MSC model in a Bayesian framework using STACEY. Our results indicate that at least nine strongly supported distinct lineages coexist in the U. cornuta aggregate, which are well chemically characterized. Additionally, we found evidence for the polyphyly of three morphospecies, Usnea brasiliensis, U. cornuta and U. dasaea.


Assuntos
Variação Genética , Usnea/química , Usnea/genética , Sequência de Bases , Teorema de Bayes , DNA Fúngico/genética , Geografia , Filogenia , Probabilidade , Especificidade da Espécie , Usnea/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA