Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 105(12): 1692-703, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22099472

RESUMO

Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)(2)](2+), with binding constants in the range 3 to 9×10(2) M(-1). DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using (32)P-ATP or (32)P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action.


Assuntos
Complexos de Coordenação/química , Cobre , DNA Circular/química , DNA/química , Indóis/química , Algoritmos , Ligação Competitiva , Dicroísmo Circular , Clivagem do DNA , Distamicinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Etídio/química , Substâncias Intercalantes/química , Oxindóis , Bases de Schiff/química , Espectrometria de Fluorescência
2.
J Inorg Biochem ; 102(5-6): 1090-103, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18295339

RESUMO

Some oxindole-Schiff base copper(II) complexes have already shown potential antitumor activity towards different cells, inducing apoptosis in a process modulated by the ligand, and having nuclei and mitochondria as main targets. Here, three novel copper(II) complexes with analogous ligands were isolated and characterized by spectroscopic techniques, having their reactivity compared to the so far most active complex in this class. Cytotoxicity experiments carried out toward human neuroblastoma SH-SY5Y cells confirmed its pro-apoptosis property. DNA cleavage studies were then performed in the presence of these complexes, in order to verify the influence of ligand structural features in its nuclease activity. All of them were able to cause double-strand DNA scissions, giving rise to nicked circular Form II and linear Form III species, in the presence of hydrogen peroxide. Additionally, DNA Form II was also detected in the absence of peroxide when the most active complex, [Cu(isaepy)2]2+ 1, was used. In an effort to better elucidate their interactions with DNA, solutions of the different complexes titrated with DNA had their absorption spectra monitored. An absorbance hyperchromism observed at 260 nm pointed to the intercalation of these complexes into the DNA structure. Further, investigations of 2-deoxy-d-ribose (DR) oxidation catalyzed by each of those complexes, using 2-thiobarbituric acid reactive species (TBARS) method, and detection of reactive oxygen species (ROS) formation by spin-trapping EPR, suggested that their mechanism of action in performing efficiently DNA cleavage occurs preferentially, but not only by oxidative pathways.


Assuntos
Antineoplásicos/química , Cobre/química , DNA/efeitos dos fármacos , Compostos Organometálicos/química , Bases de Schiff/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/química , Desoxirribonucleases/metabolismo , Desoxirribose/química , Humanos , Indóis/química , Oxindóis , Espectrofotometria Infravermelho , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA