Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animal ; 13(12): 2913-2921, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31210122

RESUMO

The increasing attention for global warming is likely to contribute to the introduction of policies or other incentives to reduce greenhouse gas (GHG) emissions related to livestock production, including dairy. The dairy sector is an important contributor to GHG emissions. Clinical mastitis (CM), an intramammary infection, results in reduced milk production and fertility, increases culling and mortality of cows and, therefore, has a negative impact on the efficiency (output/input) of milk production. This may increase GHG emissions per unit of product. Our objective was to estimate the impact of CM in dairy cows on GHG emissions of milk production for the Dutch situation. A dynamic stochastic simulation model was developed to simulate the dynamics and losses of CM for individual lactations. Cows receive a parity (1 to 5+), a milk production and a calving interval (CI). Based on the parity, cows have a risk of CM, with a maximum of three cases in a lactation. Pathogens causing CM were classified as gram-positive bacteria, gram-negative bacteria, or other. Based on the parity and pathogen combinations, cows had a reduced milk production, discarded milk, prolonged CI and a risk of removal (culling and mortality) that reduce productivity of dairy cows and therefore increase GHG emissions per unit of product. Using life cycle assessment, emissions of GHGs were estimated from cradle to farm gate for processes along the milk production chain that are affected by CM. Processes included were feed production, enteric fermentation, and manure management. Emissions of GHGs were expressed as kg CO2 equivalents per ton of fat-and-protein-corrected milk (kg CO2e/t FPCM). Emissions of cows with CM increased on average by 57.5 (6.2%) kg CO2e/t FPCM compared with cows without CM. This increase was caused by removal (39%), discarded milk (38%), reduced milk production (17%) and prolonged CI (6%). The GHG emissions increased by 48 kg CO2e/t FPCM for cows with one case of CM, by 69 kg CO2e/t FPCM for cows with two cases of CM and by 92 kg CO2e/t FPCM for cows with three cases of CM compared with cows without CM. Preventing CM can be an effective strategy for farmers to reduce GHG emissions and can contribute to sustainable development of the dairy sector, because this also can improve the income of farmers and the welfare of cows. The impact of CM on GHG emissions, however, will vary between farms due to environmental conditions and management practices.


Assuntos
Poluição do Ar/análise , Indústria de Laticínios , Gases de Efeito Estufa/análise , Mastite Bovina/fisiopatologia , Animais , Bovinos , Feminino , Mastite Bovina/microbiologia , Modelos Teóricos , Países Baixos , Processos Estocásticos
2.
Animal ; 13(5): 1074-1083, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30345949

RESUMO

The transition period is the most critical period in the lactation cycle of dairy cows. Extended lactations reduce the frequency of transition periods, the number of calves and the related labour for farmers. This study aimed to assess the impact of 2 and 4 months extended lactations on milk yield and net partial cash flow (NPCF) at herd level, and on greenhouse gas (GHG) emissions per unit of fat- and protein-corrected milk (FPCM), using a stochastic simulation model. The model simulated individual lactations for 100 herds of 100 cows with a baseline lactation length (BL), and for 100 herds with lactations extended by 2 or 4 months for all cows (All+2 and All+4), or for heifers only (H+2 and H+4). Baseline lactation length herds produced 887 t (SD: 13) milk/year. The NPCF, based on revenues for milk, surplus calves and culled cows, and costs for feed, artificial insemination, calving management and rearing of youngstock, was k€174 (SD: 4)/BL herd per year. Extended lactations reduced milk yield of the herd by 4.1% for All+2, 6.9% for All+4, 1.1% for H+2 and 2.2% for H+4, and reduced the NPCF per herd per year by k€7 for All+2, k€12 for All+4, k€2 for H+2 and k€4 for H+4 compared with BL herds. Extended lactations increased GHG emissions in CO2-equivalents per t FPCM by 1.0% for All+2, by 1.7% for All+4, by 0.2% for H+2 and by 0.4% for H+4, but this could be compensated by an increase in lifespan of dairy cows. Subsequently, production level and lactation persistency were increased to assess the importance of these aspects for the impact of extended lactations. The increase in production level and lactation persistency increased milk production of BL herds by 30%. Moreover, reductions in milk yield for All+2 and All+4 compared with BL herds were only 0.7% and 1.1% per year, and milk yield in H+2 and H+4 herds was similar to BL herds. The resulting NPCF was equal to BL for All+2 and All+4 and increased by k€1 for H+2 and H+4 due to lower costs for insemination and calving management. Moreover, GHG emissions per t FPCM were equal to BL herds or reduced (0% to -0.3%) when lactations were extended. We concluded that, depending on lactation persistency, extending lactations of dairy cows can have a positive or negative impact on the NPCF and GHG emissions of milk production.


Assuntos
Bovinos/fisiologia , Indústria de Laticínios/economia , Gases de Efeito Estufa/metabolismo , Proteínas do Leite/análise , Leite/metabolismo , Modelos Econômicos , Criação de Animais Domésticos , Animais , Simulação por Computador , Feminino , Lactação , Leite/economia , Fatores de Tempo
3.
J Dairy Sci ; 98(7): 4889-903, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25912865

RESUMO

Breeding has the potential to reduce greenhouse gas (GHG) emissions from dairy farming. Evaluating the effect of a 1-unit change (i.e., 1 genetic standard deviation improvement) in genetic traits on GHG emissions along the chain provides insight into the relative importance of genetic traits to reduce GHG emissions. Relative GHG values of genetic traits, however, might depend on feed-related farm characteristics. The objective of this study was to evaluate the effect of feed-related farm characteristics on GHG values by comparing the values of milk yield and longevity for an efficient farm and a less efficient farm. The less efficient farm did not apply precision feeding and had lower feed production per hectare than the efficient farm. Greenhouse gas values of milk yield and longevity were calculated by using a whole-farm model and 2 different optimization methods. Method 1 optimized farm management before and after a change in genetic trait by maximizing labor income; the effect on GHG emissions (i.e., from production of farm inputs up to the farm gate) was considered a side effect. Method 2 optimized farm management after a change in genetic trait by minimizing GHG emissions per kilogram of milk while maintaining labor income and milk production at least at the level before the change in trait; the effect on labor income was considered a side effect. Based on maximizing labor income (method 1), GHG values of milk yield and longevity were, respectively, 279 and 143kg of CO2 equivalents (CO2e)/unit change per cow per year on the less efficient farm, and 247 and 210kg of CO2e/unit change per cow per year on the efficient farm. Based on minimizing GHG emissions (method 2), GHG values of milk yield and longevity were, respectively, 538 and 563kg of CO2e/unit change per cow per year on the less efficient farm, and 453 and 441kg of CO2e/unit change per cow per year on the efficient farm. Sensitivity analysis showed that, for both methods, the absolute effect of a change in genetic trait depends on model inputs, including prices and emission factors. Substantial changes in relative importance between traits due to a change in model inputs occurred only in case of maximizing labor income. We concluded that assumptions regarding feed-related farm characteristics affect the absolute level of GHG values, as well as the relative importance of traits to reduce emissions when using a method based on maximizing labor income. This is because optimizing farm management based on maximizing labor income does not give any incentive for lowering GHG emissions. When using a method based on minimizing GHG emissions, feed-related farm characteristics affected the absolute level of the GHG values, but the relative importance of the traits scarcely changed: at each level of efficiency, milk yield and longevity were equally important.


Assuntos
Poluentes Atmosféricos/análise , Bovinos/fisiologia , Indústria de Laticínios/métodos , Efeito Estufa/prevenção & controle , Longevidade , Leite/metabolismo , Ração Animal/análise , Animais , Cruzamento , Bovinos/genética , Feminino , Gases/análise , Lactação , Fenótipo
4.
J Dairy Sci ; 97(8): 5191-205, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24881792

RESUMO

Current decisions on breeding in dairy farming are mainly based on economic values of heritable traits, as earning an income is a primary objective of farmers. Recent literature, however, shows that breeding also has potential to reduce greenhouse gas (GHG) emissions. The objective of this paper was to compare 2 methods to determine GHG values of genetic traits. Method 1 calculates GHG values using the current strategy (i.e., maximizing labor income), whereas method 2 is based on minimizing GHG per kilogram of milk and shows what can be achieved if the breeding results are fully directed at minimizing GHG emissions. A whole-farm optimization model was used to determine results before and after 1 genetic standard deviation improvement (i.e., unit change) of milk yield and longevity. The objective function of the model differed between method 1 and 2. Method 1 maximizes labor income; method 2 minimizes GHG emissions per kilogram of milk while maintaining labor income and total milk production at least at the level before the change in trait. Results show that the full potential of the traits to reduce GHG emissions given the boundaries that were set for income and milk production (453 and 441kg of CO2 equivalents/unit change per cow per year for milk yield and longevity, respectively) is about twice as high as the reduction based on maximizing labor income (247 and 210kg of CO2 equivalents/unit change per cow per year for milk yield and longevity, respectively). The GHG value of milk yield is higher than that of longevity, especially when the focus is on maximizing labor income. Based on a sensitivity analysis, it was shown that including emissions from land use change and using different methods for handling the interaction between milk and meat production can change results, generally in favor of milk yield. Results can be used by breeding organizations that want to include GHG values in their breeding goal. To verify GHG values, the effect of prices and emissions factors should be considered, as well as the potential effect of variation between farm types.


Assuntos
Bovinos/genética , Efeito Estufa/prevenção & controle , Leite/metabolismo , Modelos Biológicos , Criação de Animais Domésticos , Animais , Cruzamento , Indústria de Laticínios , Dieta/veterinária , Feminino , Longevidade
5.
J Dairy Sci ; 97(4): 2427-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24485690

RESUMO

The objective of this paper was to evaluate the cost-effectiveness of 3 feeding strategies to reduce enteric CH4 production in dairy cows by calculating the effect on labor income at the farm level and on greenhouse gas (GHG) emissions at the chain level (i.e., from production of farm inputs to the farm gate). Strategies included were (1) dietary supplementation of an extruded linseed product (56% linseed; 1kg/cow per day in summer and 2kg/cow per day in winter), (2) dietary supplementation of a nitrate source (75% nitrate; 1% of dry matter intake), and (3) reducing the maturity stage of grass and grass silage (grazing at 1,400 instead of 1,700kg of dry matter/ha and harvesting at 3,000 instead of 3,500kg of dry matter/ha). A dairy farm linear programing model was used to define an average Dutch dairy farm on sandy soil without a predefined feeding strategy (reference situation). Subsequently, 1 of the 3 feeding strategies was implemented and the model was optimized again to determine the new economically optimal farm situation. Enteric CH4 production in the reference situation and after implementing the strategies was calculated based on a mechanistic model for enteric CH4 and empirical formulas explaining the effect of fat and nitrate supplementation on enteric CH4 production. Other GHG emissions along the chain were calculated using life cycle assessment. Total GHG emissions in the reference situation added up to 840kg of CO2 equivalents (CO2e) per t of fat- and protein-corrected milk (FPCM) and yearly labor income of €42,605. Supplementation of the extruded linseed product reduced emissions by 9kg of CO2e/t of FPCM and labor income by €16,041; supplementation of the dietary nitrate source reduced emissions by 32kg of CO2e/t of FPCM and labor income by €5,463; reducing the maturity stage of grass and grass silage reduced emissions by 11kg of CO2e/t of FPCM and labor income by €463. Of the 3 strategies, reducing grass maturity was the most cost-effective (€57/t of CO2e compared with €241/t of CO2e for nitrate supplementation and €2,594/t of CO2e for linseed supplementation) and had the greatest potential to be used in practice because the additional costs were low.


Assuntos
Indústria de Laticínios/economia , Efeito Estufa/economia , Silagem , Animais , Bovinos , Análise Custo-Benefício , Indústria de Laticínios/métodos , Feminino , Linho/química , Gases/análise , Leite/química , Proteínas do Leite/análise , Nitratos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA