Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 142(3): 108496, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761651

RESUMO

Non-Ketotic Hyperglycinemia (NKH) is a rare inborn error of metabolism caused by impaired function of the glycine cleavage system (GCS) and characterised by accumulation of glycine in body fluids and tissues. NKH is an autosomal recessive condition and the majority of affected individuals carry mutations in GLDC (glycine decarboxylase). Current treatments for NKH have limited effect and are not curative. As a monogenic condition with known genetic causation, NKH is potentially amenable to gene therapy. An AAV9-based expression vector was designed to target sites of GCS activity. Using a ubiquitous promoter to drive expression of a GFP reporter, transduction of liver and brain was confirmed following intra-venous and/or intra-cerebroventricular administration to neonatal mice. Using the same capsid and promoter with transgenes to express mouse or human GLDC, vectors were then tested in GLDC-deficient mice that provide a model of NKH. GLDC-deficient mice exhibited elevated plasma glycine concentration and accumulation of glycine in liver and brain tissues as previously observed. Moreover, the folate profile indicated suppression of folate one­carbon metabolism (FOCM) in brain tissue, as found at embryonic stages, and reduced abundance of FOCM metabolites including betaine and choline. Neonatal administration of vector achieved reinstatement of GLDC mRNA and protein expression in GLDC-deficient mice. Treated GLDC-deficient mice showed significant lowering of plasma glycine, confirming functionality of vector expressed protein. AAV9-GLDC treatment also led to lowering of brain tissue glycine, and normalisation of the folate profile indicating restoration of glycine-derived one­carbon supply. These findings support the hypothesis that AAV-mediated gene therapy may offer potential in treatment of NKH.

2.
Mol Cell Proteomics ; 23(3): 100718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224738

RESUMO

A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.


Assuntos
RNA , Tetra-Hidrofolato Desidrogenase , Humanos , Linhagem Celular , Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
3.
Hum Mol Genet ; 32(17): 2681-2692, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37364051

RESUMO

Orofacial clefts, including cleft lip and palate (CL/P) and neural tube defects (NTDs) are among the most common congenital anomalies, but knowledge of the genetic basis of these conditions remains incomplete. The extent to which genetic risk factors are shared between CL/P, NTDs and related anomalies is also unclear. While identification of causative genes has largely focused on coding and loss of function mutations, it is hypothesized that regulatory mutations account for a portion of the unidentified heritability. We found that excess expression of Grainyhead-like 2 (Grhl2) causes not only spinal NTDs in Axial defects (Axd) mice but also multiple additional defects affecting the cranial region. These include orofacial clefts comprising midline cleft lip and palate and abnormalities of the craniofacial bones and frontal and/or basal encephalocele, in which brain tissue herniates through the cranium or into the nasal cavity. To investigate the causative mutation in the Grhl2Axd strain, whole genome sequencing identified an approximately 4 kb LTR retrotransposon insertion that disrupts the non-coding regulatory region, lying approximately 300 base pairs upstream of the 5' UTR. This insertion also lies within a predicted long non-coding RNA, oriented on the reverse strand, which like Grhl2 is over-expressed in Axd (Grhl2Axd) homozygous mutant embryos. Initial analysis of the GRHL2 upstream region in individuals with NTDs or cleft palate revealed rare or novel variants in a small number of cases. We hypothesize that mutations affecting the regulation of GRHL2 may contribute to craniofacial anomalies and NTDs in humans.


Assuntos
Anormalidades Múltiplas , Fenda Labial , Fissura Palatina , Defeitos do Tubo Neural , Disrafismo Espinal , Animais , Humanos , Camundongos , Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Encefalocele/genética , Mutação , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética
4.
Birth Defects Res ; 112(2): 205-211, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31758757

RESUMO

BACKGROUND: Neural tube defects (NTDs) result from failure of neural tube closure during embryogenesis. These severe birth defects of the central nervous system include anencephaly and spina bifida, and affect 0.5-2 per 1,000 pregnancies worldwide in humans. It has been demonstrated that acetylation plays a pivotal role during neural tube closure, as animal models for defective histone acetyltransferase proteins display NTDs. Acetylation represents an important component of the complex network of posttranslational regulatory interactions, suggesting a possible fundamental role during primary neurulation events. This study aimed to assess protein acetylation contribution to early patterning of the central nervous system both in human and murine specimens. METHODS: We used both human and mouse (Cited2 -/- ) samples to analyze the dynamic acetylation of proteins during embryo development through immunohistochemistry, western blot analysis and quantitative polymerase chain reaction. RESULTS: We report the dynamic profile of histone and protein acetylation status during neural tube closure. We also report a rescue effect in an animal model by chemical p53 inhibition. CONCLUSIONS: Our data suggest that the p53-acetylation equilibrium may play a role in primary neurulation in mammals.


Assuntos
Defeitos do Tubo Neural/embriologia , Neurulação/genética , Acetilação , Anencefalia/etiologia , Anencefalia/fisiopatologia , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Histona Acetiltransferases/metabolismo , Humanos , Mamíferos , Camundongos/embriologia , Neurulação/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Disrafismo Espinal/etiologia , Disrafismo Espinal/fisiopatologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Dis Model Mech ; 12(11)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31636139

RESUMO

Neural tube defects (NTDs), including spina bifida and anencephaly, are among the most common birth defects worldwide, but their underlying genetic and cellular causes are not well understood. Some NTDs are preventable by supplemental folic acid. However, despite widespread use of folic acid supplements and implementation of food fortification in many countries, the protective mechanism is unclear. Pax3 mutant (splotch; Sp2H ) mice provide a model in which NTDs are preventable by folic acid and exacerbated by maternal folate deficiency. Here, we found that cell proliferation was diminished in the dorsal neuroepithelium of mutant embryos, corresponding to the region of abolished Pax3 function. This was accompanied by premature neuronal differentiation in the prospective midbrain. Contrary to previous reports, we did not find evidence that increased apoptosis could underlie failed neural tube closure in Pax3 mutant embryos, nor that inhibition of apoptosis could prevent NTDs. These findings suggest that Pax3 functions to maintain the neuroepithelium in a proliferative, undifferentiated state, allowing neurulation to proceed. NTDs in Pax3 mutants were not associated with abnormal abundance of specific folates and were not prevented by formate, a one-carbon donor to folate metabolism. Supplemental folic acid restored proliferation in the cranial neuroepithelium. This effect was mediated by enhanced progression of the cell cycle from S to G2 phase, specifically in the Pax3 mutant dorsal neuroepithelium. We propose that the cell-cycle-promoting effect of folic acid compensates for the loss of Pax3 and thereby prevents cranial NTDs.


Assuntos
Ácido Fólico/administração & dosagem , Mutação , Defeitos do Tubo Neural/etiologia , Fator de Transcrição PAX3/genética , Animais , Apoptose , Ciclo Celular/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos CBA , Defeitos do Tubo Neural/prevenção & controle , Fator de Transcrição PAX3/fisiologia
6.
Nat Commun ; 10(1): 2487, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171776

RESUMO

Lack or excess expression of the surface ectoderm-expressed transcription factor Grainyhead-like2 (Grhl2), each prevent spinal neural tube closure. Here we investigate the causative mechanisms and find reciprocal dysregulation of epithelial genes, cell junction components and actomyosin properties in Grhl2 null and over-expressing embryos. Grhl2 null surface ectoderm shows a shift from epithelial to neuroepithelial identity (with ectopic expression of N-cadherin and Sox2), actomyosin disorganisation, cell shape changes and diminished resistance to neural fold recoil upon ablation of the closure point. In contrast, excessive abundance of Grhl2 generates a super-epithelial surface ectoderm, in which up-regulation of cell-cell junction proteins is associated with an actomyosin-dependent increase in local mechanical stress. This is compatible with apposition of the neural folds but not with progression of closure, unless myosin activity is inhibited. Overall, our findings suggest that Grhl2 plays a crucial role in regulating biomechanical properties of the surface ectoderm that are essential for spinal neurulation.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural/embriologia , Células Neuroepiteliais/metabolismo , Neurulação/genética , Fatores de Transcrição/genética , Actomiosina/genética , Actomiosina/metabolismo , Animais , Fenômenos Biomecânicos , Caderinas/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Camundongos , Tubo Neural/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Estresse Mecânico , Fatores de Transcrição/metabolismo
7.
Hum Mol Genet ; 27(24): 4218-4230, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30189017

RESUMO

The genetic basis of human neural tube defects (NTDs), such as anencephaly and spina bifida (SB), is complex and heterogeneous. Grainyhead-like genes represent candidates for involvement in NTDs based on the presence of SB and exencephaly in mice carrying loss-of-function alleles of Grhl2 or Grhl3. We found that reinstatement of Grhl3 expression, by bacterial artificial chromosome (BAC)-mediated transgenesis, prevents SB in Grhl3-null embryos, as in the Grhl3 hypomorphic curly tail strain. Notably, however, further increase in expression of Grhl3 causes highly penetrant SB. Grhl3 overexpression recapitulates the spinal NTD phenotype of loss-of-function embryos, although the underlying mechanism differs. However, it does not phenocopy other defects of Grhl3-null embryos such as abnormal axial curvature, cranial NTDs (exencephaly) or skin barrier defects, the latter being rescued by the Grhl3-transgene. Grhl2 and Grhl3 can form homodimers and heterodimers, suggesting a possible model in which defects arising from overexpression of Grhl3 result from sequestration of Grhl2 in heterodimers, mimicking Grhl2 loss of function. This hypothesis predicts that increased abundance of Grhl2 would have an ameliorating effect in Grhl3 overexpressing embryo. Instead, we observed a striking additive genetic interaction between Grhl2 and Grhl3 gain-of-function alleles. Severe SB arose in embryos in which both genes were expressed at moderately elevated levels that individually do not cause NTDs. Furthermore, moderate Grhl3 overexpression also interacted with the Vangl2Lp allele to cause SB, demonstrating genetic interaction with the planar cell polarity signalling pathway that is implicated in mouse and human NTDs.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Fatores de Transcrição/genética , Alelos , Animais , Animais Geneticamente Modificados/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Mutação com Perda de Função , Camundongos , Defeitos do Tubo Neural/patologia , Multimerização Proteica/genética , Disrafismo Espinal/patologia
8.
Dev Biol ; 435(2): 130-137, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29397878

RESUMO

Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Defeitos do Tubo Neural/genética , Tubo Neural/fisiologia , Neurulação/genética , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Camadas Germinativas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Placa Neural/metabolismo , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/patologia , Especificidade de Órgãos , RNA Mensageiro/biossíntese , Disrafismo Espinal/embriologia , Disrafismo Espinal/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
9.
Brain ; 136(Pt 9): 2836-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23935126

RESUMO

Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone.


Assuntos
Ácido Fólico/efeitos adversos , Defeitos do Tubo Neural/prevenção & controle , Nucleosídeos de Purina/uso terapêutico , Nucleosídeos de Pirimidina/uso terapêutico , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/fisiologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Ácido Fólico/metabolismo , Histonas/metabolismo , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Masculino , Exposição Materna , Camundongos , Camundongos Mutantes , Defeitos do Tubo Neural/tratamento farmacológico , Defeitos do Tubo Neural/genética , Gravidez , Estatísticas não Paramétricas , Timidina/uso terapêutico
10.
Birth Defects Res A Clin Mol Teratol ; 97(6): 398-402, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23733478

RESUMO

BACKGROUND: Lamins are intermediate filament proteins that form a major component of the nuclear lamina, a protein complex at the surface of the inner nuclear membrane. Numerous clinically diverse conditions, termed laminopathies, have been found to result from mutation of LMNA. In contrast, coding or loss of function mutations of LMNB1, encoding lamin B1, have not been identified in human disease. In mice, polymorphism in Lmnb1 has been shown to modify risk of neural tube defects (NTDs), malformations of the central nervous system that result from incomplete closure of the neural folds. METHODS: Mutation analysis by DNA sequencing was performed on all exons of LMNB1 in 239 samples from patients with NTDs from the United Kingdom, Sweden, and United States. Possible functional effects of missense variants were analyzed by bioinformatics prediction and fluorescence in photobleaching. RESULTS: In NTD patients, we identified two unique missense variants that were predicted to disrupt protein structure/function and represent putative contributory mutations. Fluorescence loss in photobleaching analysis showed that the A436T variant compromised stability of lamin B1 interaction within the lamina. CONCLUSION: The genetic basis of human NTDs appears highly heterogenous with possible involvement of multiple predisposing genes. We hypothesize that rare variants of LMNB1 may contribute to susceptibility to NTDs.


Assuntos
Predisposição Genética para Doença/genética , Lamina Tipo B/genética , Defeitos do Tubo Neural/genética , Estudos de Coortes , Biologia Computacional , Análise Mutacional de DNA , Éxons/genética , Fluorescência , Humanos , Lamina Tipo B/metabolismo , Mutação de Sentido Incorreto/genética , Lâmina Nuclear/metabolismo , Fotodegradação , Suécia , Reino Unido , Estados Unidos
11.
PLoS Genet ; 8(11): e1003059, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166514

RESUMO

Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects whose complex multigenic causation has hampered efforts to delineate their molecular basis. The effect of putative modifier genes in determining NTD susceptibility may be investigated in mouse models, particularly those that display partial penetrance such as curly tail, a strain in which NTDs result from a hypomorphic allele of the grainyhead-like-3 gene. Through proteomic analysis, we found that the curly tail genetic background harbours a polymorphic variant of lamin B1, lacking one of a series of nine glutamic acid residues. Lamins are intermediate filament proteins of the nuclear lamina with multiple functions that influence nuclear structure, cell cycle properties, and transcriptional regulation. Fluorescence loss in photobleaching showed that the variant lamin B1 exhibited reduced stability in the nuclear lamina. Genetic analysis demonstrated that the variant also affects neural tube closure: the frequency of spina bifida and anencephaly was reduced three-fold when wild-type lamin B1 was bred into the curly tail strain background. Cultured fibroblasts expressing variant lamin B1 show significantly increased nuclear dysmorphology and diminished proliferative capacity, as well as premature senescence, associated with reduced expression of cyclins and Smc2, and increased expression of p16. The cellular basis of spinal NTDs in curly tail embryos involves a proliferation defect localised to the hindgut epithelium, and S-phase progression was diminished in the hindgut of embryos expressing variant lamin B1. These observations indicate a mechanistic link between altered lamin B1 function, exacerbation of the Grhl3-mediated cell proliferation defect, and enhanced susceptibility to NTDs. We conclude that lamin B1 is a modifier gene of major effect for NTDs resulting from loss of Grhl3 function, a role that is likely mediated via the key function of lamin B1 in maintaining integrity of the nuclear envelope and ensuring normal cell cycle progression.


Assuntos
Ciclo Celular , Lamina Tipo B , Defeitos do Tubo Neural , Membrana Nuclear , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular , Divisão Celular , Proliferação de Células , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Camundongos , Mutação , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Polimorfismo Genético , Proteômica , Disrafismo Espinal/genética , Disrafismo Espinal/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Birth Defects Res A Clin Mol Teratol ; 88(8): 612-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20589880

RESUMO

BACKGROUND: Folate one-carbon metabolism has been implicated as a determinant of susceptibility to neural tube defects (NTDs), owing to the preventive effect of maternal folic acid supplementation and the higher risk associated with markers of diminished folate status. METHODS: Folate one-carbon metabolism was compared in curly tail (ct/ct) and genetically matched congenic (+(ct)/+(ct)) mouse strains using the deoxyuridine suppression test in embryonic fibroblast cells and by quantifying s-adenosylmethionine (SAM) and s-adenosylhomocysteine (SAH) in embryos using liquid chromatography tandem mass spectrometry. A possible genetic interaction between curly tail and a null allele of 5,10-methylenetetrahydrofolate reductase (MTHFR) was investigated by generation of compound mutant embryos. RESULTS: There was no deficit in thymidylate biosynthesis in ct/ct cells, but incorporation of exogenous thymidine was lower than in +(ct)/+(ct) cells. In +(ct)/+(ct) embryos the SAM/SAH ratio was diminished by dietary folate deficiency and normalized by folic acid or myo-inositol treatment, in association with prevention of NTDs. In contrast, folate deficiency caused a significant increase in the SAM/SAH ratio in ct/ct embryos. Loss of MTHFR function in curly tail embryos significantly reduced the SAM/SAH ratio but did not cause cranial NTDs or alter the frequency of caudal NTDs. CONCLUSIONS: Curly tail fibroblasts and embryos, in which Grhl3 expression is reduced, display alterations in one-carbon metabolism, particularly in the response to folate deficiency, compared to genetically matched congenic controls in which Grhl3 is unaffected. However, unlike folate deficiency, diminished methylation potential appears to be insufficient to cause cranial NTDs in the curly tail strain, nor does it increase the frequency of caudal NTDs.


Assuntos
Carbono/metabolismo , Deficiência de Ácido Fólico/complicações , Ácido Fólico/metabolismo , Defeitos do Tubo Neural/etiologia , Animais , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/metabolismo , Deficiência de Ácido Fólico/genética , Metilação , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Camundongos Mutantes , Defeitos do Tubo Neural/metabolismo , Gravidez , S-Adenosil-Homocisteína/análise , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/análise , S-Adenosilmetionina/metabolismo , Timidina Monofosfato/biossíntese , Fatores de Transcrição/genética
13.
Hum Mol Genet ; 17(14): 2150-9, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18407919

RESUMO

Homozygous loss-of-function mutations in the transcription factor LHX3 have been associated with hypopituitarism with structural anterior pituitary defects and cervical abnormalities with or without restricted neck rotation. We report two novel recessive mutations in LHX3 in four patients from two unrelated pedigrees. Clinical evaluation revealed that all four patients exhibit varying degrees of bilateral sensorineural hearing loss, which has not been previously reported in association with LHX3 mutations, in addition to hypopituitarism including adrenocorticotropic hormone deficiency and an unusual skin and skeletal phenotype in one family. Furthermore, re-evaluation of three patients previously described with LHX3 mutations showed they also exhibit varying degrees of bilateral sensorineural hearing loss. We have investigated a possible role for LHX3 in inner ear development in humans using in situ hybridization of human embryonic and fetal tissue. LHX3 is expressed in defined regions of the sensory epithelium of the developing inner ear in a pattern overlapping that of SOX2, which precedes the onset of LHX3 expression and is known to be required for inner ear and pituitary development in both mice and humans. Moreover, we show that SOX2 is capable of binding to and activating transcription of the LHX3 proximal promoter in vitro. This study therefore extends the phenotypic spectrum associated with LHX3 mutations to encompass variable sensorineural hearing loss and suggests a possible interaction between LHX3 and SOX2 likely to be important for development of both the inner ear and the anterior pituitary in human embryonic development.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Homeodomínio/genética , Hipopituitarismo/genética , Mutação , Adolescente , Animais , Sequência de Bases , Células CHO , Criança , Cricetinae , Cricetulus , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Orelha Interna/embriologia , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Expressão Gênica , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Perda Auditiva Neurossensorial/embriologia , Perda Auditiva Neurossensorial/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hipopituitarismo/embriologia , Hipopituitarismo/metabolismo , Lactente , Proteínas com Homeodomínio LIM , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição SOXB1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
14.
J Clin Endocrinol Metab ; 93(5): 1865-73, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18285410

RESUMO

CONTEXT: Heterozygous, de novo mutations in the transcription factor SOX2 are associated with bilateral anophthalmia or severe microphthalmia and hypopituitarism. Variable additional abnormalities include defects of the corpus callosum and hippocampus. OBJECTIVE: We have ascertained a further three patients with severe eye defects and pituitary abnormalities who were screened for mutations in SOX2. To provide further evidence of a direct role for SOX2 in hypothalamo-pituitary development, we have studied the expression of the gene in human embryonic tissues. RESULTS: All three patients harbored heterozygous SOX2 mutations: a deletion encompassing the entire gene, an intragenic deletion (c.70_89del), and a novel nonsense mutation (p.Q61X) within the DNA binding domain that results in impaired transactivation. We also show that human SOX2 can inhibit beta-catenin-driven reporter gene expression in vitro, whereas mutant SOX2 proteins are unable to repress efficiently this activity. Furthermore, we show that SOX2 is expressed throughout the human brain, including the developing hypothalamus, as well as Rathke's pouch, the developing anterior pituitary, and the eye. CONCLUSIONS: Patients with SOX2 mutations often manifest the unusual phenotype of hypogonadotropic hypogonadism, with sparing of other pituitary hormones despite anterior pituitary hypoplasia. SOX2 expression patterns in human embryonic development support a direct involvement of the protein during development of tissues affected in these individuals. Given the critical role of Wnt-signaling in the development of most of these tissues, our data suggest that a failure to repress the Wnt-beta-catenin pathway could be one of the underlying pathogenic mechanisms associated with loss-of-function mutations in SOX2.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Olho/embriologia , Proteínas HMGB/fisiologia , Hipófise/embriologia , Prosencéfalo/embriologia , Fatores de Transcrição/fisiologia , Adolescente , Adulto , Criança , Proteínas de Ligação a DNA/genética , Anormalidades do Olho/etiologia , Anormalidades do Olho/genética , Feminino , Proteínas HMGB/genética , Humanos , Hipopituitarismo/etiologia , Hipopituitarismo/genética , Mutação , RNA Mensageiro/análise , Fatores de Transcrição SOXB1 , Transdução de Sinais , Fatores de Transcrição/genética , beta Catenina/fisiologia
15.
J Comp Neurol ; 507(4): 1497-520, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18205207

RESUMO

INSM1 is a zinc-finger protein expressed in the developing nervous system and pancreas as well as in medulloblastomas and neuroendocrine tumors. With in situ hybridization combined with immunohistochemistry, we detected INSM1 mRNA in all embryonic to adult neuroproliferative areas examined: embryonic neocortex, ganglionic eminence, midbrain, retina, hindbrain, and spinal cord; autonomic, dorsal root, trigeminal and spiral ganglia; olfactory and vomeronasal organ epithelia; postnatal cerebellum; and juvenile to adult subgranular zone of dentate gyrus, subventricular zone, and rostral migratory stream leading to olfactory bulb. In most of these neurogenic areas, subsets of neuronal progenitors and nascent, but not mature, neurons express INSM1. For example, in developing cerebellum, INSM1 is present in proliferating progenitors of the outer external granule layer (EGL) and in postmitotic cells of the inner EGL, but not in mature granule cell neurons. Also, lining the neural tube from spinal cord to neocortex in mouse as well as human embryos, cells undergoing mitosis apically do not express INSM1. By contrast, nonsurface progenitors located in the basal ventricular and/or subventricular zones express INSM1. Whereas apical progenitors are proliferative and generate one or two additional progenitors, basal progenitors are thought to divide terminally and symmetrically to produce two neurons. The nematode ortholog of INSM1, EGL-46, is expressed during terminal symmetric neurogenic divisions and regulates the termination of proliferation. We propose that, in mice and humans, INSM1 is likewise expressed transiently during terminal neurogenic divisions, from late progenitors to nascent neurons, and particularly during symmetric neuronogenic divisions.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Neurônios/metabolismo , Proteínas Repressoras/biossíntese , Células-Tronco/metabolismo , Animais , Embrião de Mamíferos , Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Neurônios/citologia , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA