Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Magn Reson ; 26(1): 101030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38403074

RESUMO

BACKGROUND: Ascending thoracic aortic aneurysm (ATAA) is a silent and threatening dilation of the ascending aorta (AscAo). Maximal aortic diameter which is currently used for ATAA patients management and surgery planning has been shown to inadequately characterize risk of dissection in a large proportion of patients. Our aim was to propose a comprehensive quantitative evaluation of aortic morphology and pressure-flow-wall associations from four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) data in healthy aging and in patients with ATAA. METHODS: We studied 17 ATAA patients (64.7 ± 14.3 years, 5 females) along with 17 age- and sex-matched healthy controls (59.7 ± 13.3 years, 5 females) and 13 younger healthy subjects (33.5 ± 11.1 years, 4 females). All subjects underwent a CMR exam, including 4D flow and three-dimensional anatomical images of the aorta. This latter dataset was used for aortic morphology measurements, including AscAo maximal diameter (iDMAX) and volume, indexed to body surface area. 4D flow MRI data were used to estimate 1) cross-sectional local AscAo spatial (∆PS) and temporal (∆PT) pressure changes as well as the distance (∆DPS) and time duration (∆TPT) between local pressure peaks, 2) AscAo maximal wall shear stress (WSSMAX) at peak systole, and 3) AscAo flow vorticity amplitude (VMAX), duration (VFWHM), and eccentricity (VECC). RESULTS: Consistency of flow and pressure indices was demonstrated through their significant associations with AscAo iDMAX (WSSMAX:r = -0.49, p < 0.001; VECC:r = -0.29, p = 0.045; VFWHM:r = 0.48, p < 0.001; ∆DPS:r = 0.37, p = 0.010; ∆TPT:r = -0.52, p < 0.001) and indexed volume (WSSMAX:r = -0.63, VECC:r = -0.51, VFWHM:r = 0.53, ∆DPS:r = 0.54, ∆TPT:r = -0.63, p < 0.001 for all). Intra-AscAo cross-sectional pressure difference, ∆PS, was significantly and positively associated with both VMAX (r = 0.55, p = 0.002) and WSSMAX (r = 0.59, p < 0.001) in the 30 healthy subjects (48.3 ± 18.0 years). Associations remained significant after adjustment for iDMAX, age, and systolic blood pressure. Superimposition of ATAA patients to normal aging trends between ∆PS and WSSMAX as well as VMAX allowed identifying patients with substantially high pressure differences concomitant with AscAo dilation. CONCLUSION: Local variations in pressures within ascending aortic cross-sections derived from 4D flow MRI were associated with flow changes, as quantified by vorticity, and with stress exerted by blood on the aortic wall, as quantified by wall shear stress. Such flow-wall and pressure interactions might help for the identification of at-risk patients.


Assuntos
Aorta Torácica , Aneurisma da Aorta Torácica , Pressão Arterial , Valor Preditivo dos Testes , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Aneurisma da Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Idoso , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/fisiopatologia , Velocidade do Fluxo Sanguíneo , Fluxo Sanguíneo Regional , Imagem Cinética por Ressonância Magnética , Interpretação de Imagem Assistida por Computador , Adulto Jovem , Imagem de Perfusão/métodos , Imageamento por Ressonância Magnética
2.
Comput Biol Med ; 103: 101-108, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347341

RESUMO

BACKGROUND: Clinically, aortic geometry assessment is mainly based on the measurement of maximal diameters at different anatomic locations, which are subsequently used to indicate prophylactic aortic surgery. However, 3D evaluation of aortic morphology could provide volumetric quantification, which integrates both aortic dilatation and elongation and might thus be more sensitive to early geometric changes than diameters. Precise aortic morphology is also required for the calculation of pulse wave velocity (PWVMRI), an established marker of aortic stiffness. Accordingly, we proposed a 3D semi-automated analysis of thoracic aorta MRI data optimizing morphological and subsequent stiffness assessment. METHODS: We studied 74 individuals (40 males, 50 ± 12years): 21 healthy volunteers and 53 patients with hypertension in whom aortic 3D MRI angiography and 2D + t phase-contrast and cine imaging were performed. A semi-automated method was proposed for volumetric aortic segmentation and was evaluated by studying resulting measurements (length, diameters, volumes and PWVMRI) in terms of: 1) reproducibility, 2) correlations with well-established 2D aortic length and diameters, 3) associations with age, carotid-femoral PWV (cf-PWV) and presence of hypertension. RESULTS: The measurements obtained with the proposed method were reproducible (coefficients of variation ≤ 5.1%) and were highly correlated with 2D measurements (arch length: r = 0.80, Bland-Altman mean bias [limits]: 2.7 mm [-25; 30]; PWVMRI: r = 0.95, 0.22 m/s [-1.9; 2.4]). Higher or similar correlations with age were found for the proposed 3D method compared to the 2D approach (arch length: r = 0.47 (2D), r = 0.60 (3D); PWVMRI: r = 0.63 (2D), r = 0.64 (3D)). Moreover, a significant association was found between PWVMRI and cf-PWV (r = 0.49, p < 0.001). All aortic measurements increased with hypertension (p < 0.05) and with age: arch length (+9mm/decade); diameters: ascending (+1.2mm/decade) and descending aorta (+1.0mm/decade); volumes: ascending (+2.6mL/decade) and descending aorta (+4.0mL/decade); PWVMRI (+1.7  m s-1/decade). CONCLUSIONS: A semi-automated method based on cylindrical active surfaces was proposed for the 3D segmentation of the aorta using a single MRI dataset, providing aortic diameters at anatomical landmarks, aortic volumes and the aortic centerline length used for PWV estimation. Such measurements were reproducible and comparable to expert measurements, which required time-consuming centerline delineation. Furthermore, expected relationships with age and hypertension were found indicating the consistency of our measurements.


Assuntos
Aorta/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Rigidez Vascular/fisiologia , Adulto , Envelhecimento/fisiologia , Aorta/fisiopatologia , Feminino , Humanos , Hipertensão/fisiopatologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise de Onda de Pulso/métodos
3.
Phys Med Biol ; 62(3): 1113-1125, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27992383

RESUMO

Dynamic contrast-enhanced ultrasound has been proposed to monitor tumor therapy, as a complement to volume measurements. To assess the variability of perfusion parameters in ideal conditions, four consecutive test-retest studies were acquired in a mouse tumor model, using controlled injections. The impact of mathematical modeling on parameter variability was then investigated. Coefficients of variation (CV) of tissue blood volume (BV) and tissue blood flow (BF) based-parameters were estimated inside 32 sub-regions of the tumors, comparing the log-normal (LN) model with a one-compartment model fed by an arterial input function (AIF) and improved by the introduction of a time delay parameter. Relative perfusion parameters were also estimated by normalization of the LN parameters and normalization of the one-compartment parameters estimated with the AIF, using a reference tissue (RT) region. A direct estimation (rRTd) of relative parameters, based on the one-compartment model without using the AIF, was also obtained by using the kinetics inside the RT region. Results of test-retest studies show that absolute regional parameters have high CV, whatever the approach, with median values of about 30% for BV, and 40% for BF. The positive impact of normalization was established, showing a coherent estimation of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd approach). These values were significantly lower (p < 0.05) than the CV of absolute parameters. The rRTd approach provided the smallest CV and should be preferred for estimating relative perfusion parameters.


Assuntos
Carcinoma Pulmonar de Lewis/diagnóstico por imagem , Modelos Teóricos , Imagem de Perfusão/métodos , Ultrassonografia/métodos , Algoritmos , Animais , Volume Sanguíneo , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Meios de Contraste , Camundongos , Camundongos Endogâmicos BALB C , Imagem de Perfusão/normas , Ultrassonografia/normas
4.
Ultrasound Med Biol ; 34(6): 938-48, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18255219

RESUMO

Quantitative analysis of tissue perfusion using contrast-enhanced ultrasound is still limited by shadowing, which is caused by inadequate compensation for microbubble contrast agent attenuation. Many previous methods have been developed for attenuation correction in soft tissues. However, no method has been proposed to correct for microbubble attenuation in vivo. In this article, a model to estimate microbubble attenuation is presented, using the time-intensity variation in a highly echogenic distal area without contrast uptake. This model is based on the assumption that a linear relationship holds between local microbubble attenuation and local backscatter. The model was applied to 12 murine renal perfusion studies. Parametric images of microbubble attenuation were generated, corresponding to dynamic contrast agent-specific sequences without shadowing. Contrast uptake kinetics consistent with the physiology were retrieved in all perfused areas. This method therefore proved to be of potential interest in the quantification of tissue perfusion in small animal studies.


Assuntos
Algoritmos , Meios de Contraste , Aumento da Imagem , Rim/diagnóstico por imagem , Microbolhas , Ultrassonografia Doppler de Pulso , Animais , Artefatos , Feminino , Neoplasias Renais/diagnóstico por imagem , Camundongos , Camundongos Nus , Modelos Animais , Espalhamento de Radiação , Tumor de Wilms/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA