Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36503989

RESUMO

The adult Drosophila testis contains a well-defined niche created by a cluster of hub cells, which secrete signals that maintain adjacent germline stem cells and somatic cyst stem cells (CySCs). Hub cells are normally quiescent in adult flies but can exit quiescence, delaminate from the hub and convert into CySCs after ablation of all CySCs. The opposite event, CySC conversion into hub cells, was proposed to occur under physiological conditions, but the frequency of this event is debated. Here, to probe further the question of whether or not hub cells can be regenerated, we developed methods to genetically ablate some or all hub cells. Surprisingly, when flies were allowed to recover from ablation, the missing hub cells were not replaced. Hub cells did not exit quiescence after partial ablation of hub cells, and labeled cells from outside the hub did not enter the hub during or after ablation. Despite its ability to exit quiescence in response to CySC ablation, we conclude that the hub in the adult Drosophila testis does not have a mechanism to replenish missing hub cells.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Masculino , Proteínas de Drosophila/genética , Testículo , Células-Tronco/fisiologia , Nicho de Células-Tronco , Células Germinativas/fisiologia , Drosophila melanogaster , Diferenciação Celular/fisiologia
2.
Elife ; 112022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468055

RESUMO

Adult stem cells are maintained in niches, specialized microenvironments that regulate their self-renewal and differentiation. In the adult Drosophila testis stem cell niche, somatic hub cells produce signals that regulate adjacent germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Hub cells are normally quiescent, but after complete genetic ablation of CySCs, they can proliferate and transdifferentiate into new CySCs. Here we find that Epidermal growth factor receptor (EGFR) signaling is upregulated in hub cells after CySC ablation and that the ability of testes to recover from ablation is inhibited by reduced EGFR signaling. In addition, activation of the EGFR pathway in hub cells is sufficient to induce their proliferation and transdifferentiation into CySCs. We propose that EGFR signaling, which is normally required in adult cyst cells, is actively inhibited in adult hub cells to maintain their fate but is repurposed to drive stem cell regeneration after CySC ablation.


Assuntos
Cistos , Proteínas de Drosophila , Animais , Transdiferenciação Celular , Cistos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Masculino , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Células-Tronco/fisiologia , Testículo/metabolismo , Microambiente Tumoral
3.
Development ; 143(5): 754-63, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811385

RESUMO

Sexual identity is continuously maintained in specific differentiated cell types long after sex determination occurs during development. In the adult Drosophila testis, the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo) acts with the canonical male sex determinant DoublesexM (Dsx(M)) to maintain the male identity of somatic cyst stem cells and their progeny. Here we find that ectopic expression of chinmo is sufficient to induce a male identity in adult ovarian somatic cells, but it acts through a Dsx(M)-independent mechanism. Conversely, the feminization of the testis somatic stem cell lineage caused by loss of chinmo is enhanced by expression of the canonical female sex determinant Dsx(F), indicating that chinmo acts in parallel with the canonical sex determination pathway to maintain the male identity of testis somatic cells. Consistent with this finding, ectopic expression of female sex determinants in the adult testis disrupts tissue morphology. The miRNA let-7 downregulates chinmo in many contexts, and ectopic expression of let-7 in the adult testis is sufficient to recapitulate the chinmo loss-of-function phenotype, but we find no apparent phenotypes upon removal of let-7 in the adult ovary or testis. Our finding that chinmo is necessary and sufficient to promote a male identity in adult gonadal somatic cells suggests that the sexual identity of somatic cells can be reprogrammed in the adult Drosophila ovary as well as in the testis.


Assuntos
Linhagem da Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Proteínas do Tecido Nervoso/genética , Ovário/citologia , Animais , Diferenciação Celular , Proteínas de Drosophila/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Janus Quinases/metabolismo , Masculino , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Oogênese , Fenótipo , Fatores de Transcrição STAT/metabolismo , Processos de Determinação Sexual , Testículo/citologia
4.
Cell Rep ; 7(3): 715-21, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24746819

RESUMO

Adult stem cells reside in specialized regulatory microenvironments, or niches, where local signals ensure stem cell maintenance. The Drosophila testis contains a well-characterized niche wherein signals from postmitotic hub cells promote maintenance of adjacent germline stem cells and somatic cyst stem cells (CySCs). Hub cells were considered to be terminally differentiated; here, we show that they can give rise to CySCs. Genetic ablation of CySCs triggers hub cells to transiently exit quiescence, delaminate from the hub, and convert into functional CySCs. Ectopic Cyclin D-Cdk4 expression in hub cells is also sufficient to trigger their conversion into CySCs. In both cases, this conversion causes the formation of multiple ectopic niches over time. Therefore, our work provides a model for understanding how oncogenic mutations in quiescent niche cells could promote loss of quiescence, changes in cell fate, and aberrant niche expansion.


Assuntos
Nicho de Células-Tronco , Células-Tronco/metabolismo , Testículo/citologia , Animais , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA