Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2709: 263-276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572287

RESUMO

RNA nanoparticles are promising therapeutic platforms to improve radiotherapy since they can be functionalized with multiple small interfering RNAs (RNAi) to simultaneously silence critical radioresistance genes. Here we describe the transfer of RNA rings to mammalian cancer cells through reverse transfection, followed by in vitro irradiation and biological assays as surrogates' endpoints for radiotherapy efficacy.

2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 422-432, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29908366

RESUMO

Melanomas often accumulate gangliosides, sialic acid-containing glycosphingolipids found in the outer leaflet of plasma membranes, as disialoganglioside GD3 and its derivatives. Here, we have transfected the GD3 synthase gene (ST8Sia I) in a normal melanocyte cell line in order to evaluate changes in the biological behavior of non-transformed cells. GD3-synthase expressing cells converted GM3 into GD3 and accumulated both GD3 and its acetylated form, 9-O-acetyl-GD3. Melanocytes were rendered more migratory on laminin-1 surfaces. Cell migration studies using the different transfectants, either treated or not with the glucosylceramide synthase inhibitor d-1-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (PPPP), allowed us to show that while GM3 is a negative regulator of melanocyte migration, GD3 increases it. We showed that gangliosides were shed to the matrix by migrating cells and that GD3 synthase transfected cells shed extracellular vesicles (EVs) enriched in GD3. EVs enriched in GD3 stimulated cell migration of GD3 negative cells, as observed in time lapse microscopy studies. Otherwise, EVs shed by GM3+veGD3-ve cells impaired migration and diminished cell velocity in cells overexpressing GD3. The balance of antimigratory GM3 and promigratory GD3 gangliosides in melanocytes could be altered not only by the overexpression of enzymes such as ST8Sia I, but also by the horizontal transfer of ganglioside enriched extracellular vesicles. This study highlights that extracellular vesicles transfer biological information also through their membrane components, which include a variety of glycosphingolipids remodeled in disease states such as cancer.


Assuntos
Gangliosídeos/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Acetilação , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiologia , Gangliosídeos/farmacologia , Gangliosídeos/fisiologia , Glicoesfingolipídeos/metabolismo , Camundongos , Transfecção
3.
Oncotarget ; 9(18): 14567-14579, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581864

RESUMO

Melanoma is a current worldwide problem, as its incidence is increasing. In the last years, several studies have shown that melanoma cells display high levels of autophagy, a self-degradative process that can promote survival leading to drug resistance. Consequently, autophagy regulation represents a challenge for cancer therapy. Herein, we showed that galectin-3 (Gal-3), a ß-galactoside binding lectin which is often lost along melanoma progression, is a negative regulator of autophagy in melanoma cells. Our data demonstrated that Gal-3low/negative cells were more resistant to the inhibition of the activity of the cancer driver gene BRAFV600E by vemurafenib (PLX4032). Interestingly, in these cells, starvation caused further LC3-II accumulation in cells exposed to chloroquine, which inhibits the degradative step in autophagy. In addition, Gal-3 low/negative tumor cells accumulated more LC3-II than Gal-3 high tumor cells in vivo. Resistance of Gal-3low/negative cells was associated with increased production of superoxide and activation of the Endoplasmic Reticulum (ER) stress response, as evaluated by accumulation of GRP78. Pharmacological inhibition of autophagy with bafilomycin A reversed the relative resistance of Gal-3low/negative cells to vemurafenib treatment. Taken together, these results show that the autophagic flux is dependent on Gal-3 levels, which attenuate the prosurvival role of autophagy.

4.
Oncotarget ; 8(26): 43114-43129, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28562344

RESUMO

Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knock-down sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Proteínas Repressoras/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Melanoma/genética , Melanoma/patologia , Proibitinas , Proteômica , Proteínas Repressoras/genética , Tunicamicina/farmacologia
6.
Mol Cell Biochem ; 415(1-2): 119-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27015684

RESUMO

During the last two decades, new insights into proteasome function and its role in several human diseases made it a potential therapeutic target. In this context, Amblyomin-X is a Kunitz-type FXa inhibitor similar to endogenous tissue factor pathway inhibitor (TFPI) and is a novel proteasome inhibitor. Herein, we have demonstrated Amblyomin-X cytotoxicity to different tumor cells lines such as pancreatic (Panc1, AsPC1BxPC3) and melanoma (SK-MEL-5 and SK-MEL-28). Of note, Amblyomin-X was not cytotoxic to normal human fibroblast cells. In addition, Amblyomin-X promoted accumulation of ER stress markers (GRP78 and GADD153) in sensitive (SK-MEL-28) and bortezomib-resistant (Mia-PaCa-2) tumor cells. The intracellular calcium concentration [Ca(2+)] i was slightly modulated in human tumor cells (SK-MEL-28 and Mia-PaCa-2) after 24 h of Amblyomin-X treatment. Furthermore, Amblyomin-X induced mitochondrial dysfunction, cytochrome-c release, PARP cleavage, and activation of caspase cascade in both human tumor (SK-MEL-28 and Mia-PaCa-2) cells. These investigations might help in further understanding of the antitumor properties of Amblyomin-X.


Assuntos
Caspases/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Melanoma/patologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Proteínas e Peptídeos Salivares/farmacologia , Proteínas de Artrópodes , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Humanos , Proteínas Recombinantes/farmacologia
7.
Invest New Drugs ; 31(3): 493-505, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22975862

RESUMO

In cancer-treatment, potentially therapeutic drugs trigger their effects through apoptotic mechanisms. Generally, cell response is manifested by Bcl-2 family protein regulation, the impairment of mitochondrial functions, and ROS production. Notwithstanding, several drugs operate through proteasome inhibition, which, by inducing the accumulation and aggregation of misfolded or unfolded proteins, can lead to endoplasmic reticulum (ER) stress. Accordingly, it was shown that Amblyomin-X, a Kunitz-type inhibitor identified in the transcriptome of the Amblyomma cajennense tick by ESTs sequence analysis of a cDNA library, obtained in recombinant protein form, induces apoptosis in murine renal adenocarcinoma (RENCA) cells by: inducing imbalance between pro- and anti-apoptotic Bcl-2 family proteins, dysfunction/mitochondrial damage, production of reactive oxygen species (ROS), caspase cascade activation, and proteasome inhibition, all ER-stress inductive. Moreover, there was no manifest action on normal mouse-fibroblast cells (NHI3T3), suggesting an Amblyomin-X tumor-cell selectivity. Taken together, these evidences indicate that Amblyomin-X could be a promising candidate for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteassoma/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Artrópodes , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores do Fator Xa , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Células NIH 3T3 , Óxido Nítrico/metabolismo , Proteínas Recombinantes/farmacologia , Fator de Transcrição CHOP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA