Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(11)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030302

RESUMO

BACKGROUND: The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy. METHODS: Mice bearing human papilloma virus 16 (HPV16) E6/E7-expressing TC-1 tumors were vaccinated with HPV16 E7 long peptides and additionally received chemotherapy consisting of cisplatin and topotecan. We performed an in-depth study of this combinatorial chemoimmunotherapy on the effector function and expansion/contraction kinetics of vaccine-induced CD8+ T cells in the peripheral blood and tumor microenvironment (TME). In addition, we interrogated the particular role of chemotherapy-induced upregulation of costimulatory ligands by tumor-infiltrated myeloid cells on T cell proliferation and survival. RESULTS: We show that E7 long peptide vaccination combined with cisplatin and topotecan, results in CD8+ T cell-dependent durable rejection of established tumors and 94% long-term survival. Although topotecan initially repressed the expansion of vaccine-induced CD8+ T cells, these cells eventually expanded vigorously, which was followed by delayed contraction. These effects associated with the induction of the proliferation marker Ki-67 and the antiapoptosis molecule Bcl-2 by intratumoral tumor-specific CD8+ T cells, which was regulated by topotecan-mediated upregulation of the costimulatory ligand CD70 on myeloid cells in the TME. CONCLUSIONS: Taken together, our data show that although treatment with cisplatin, topotecan and vaccination initially delays T cell expansion, this combinatorial therapy results eventually in a more robust T cell-mediated tumor eradication due to enhancement of costimulatory molecules in the TME.


Assuntos
Vacinas Anticâncer , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linfócitos T CD8-Positivos , Vacinas Anticâncer/uso terapêutico , Topotecan/farmacologia , Topotecan/uso terapêutico , DNA Topoisomerases Tipo I , Proteínas E7 de Papillomavirus , Vacinas de Subunidades Antigênicas , Neoplasias do Colo do Útero/tratamento farmacológico , Proliferação de Células , Microambiente Tumoral , Ligante CD27
2.
Heliyon ; 8(7): e09915, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35874055

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor clinical prognosis and is usually a metastatic disease. In the last decades, oncolytic viro-immunotherapy has shown a promise as treatment strategy with encouraging results for a variety of tumors. Newcastle Disease Virus (NDV) is an oncolytic virus which selectively infects and damages tumors either by directly killing tumor cells or by promoting an anti-tumor immune response. Several studies have demonstrated that NDV strains with a multi-basic cleavage site (MBCS) in the fusion protein (F) have increased anti-tumor efficacy upon intratumoral injection in murine tumor models. However, intravenous injections, in which the oncolytic virus spreads systemically, could be more beneficial to treat metastasized PDAC in addition to the primary tumor. In this study, we compared the oncolytic efficacy and safety of intratumoral and intravenous injections with NDV containing an MBCS in F (NDV F3aa) in an immune deficient murine xenograft (BxPC3) model for PDAC. In this model, both intratumoral and intravenous injections with NDV F3aa induced anti-tumor efficacy as measured at 10 days after the first injection. Upon intravenous injection virus was detected in some of the tumors, indicating the systemic spread of the virus. Upon both treatments, mice did not display weight loss or abnormalities and treated mice did not secrete virus to the environment. These data demonstrate that intravenous injections of NDV F3aa can be applicable to treat metastasized cancers in immune deficient hosts without inflicting adverse effects.

3.
PLoS One ; 17(2): e0263707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139115

RESUMO

Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its oncolytic efficacy in vitro and in vivo. However, NDV with a MBCS can be virulent in poultry. We aimed to develop an NDV with a MBCS but with reduced virulence for poultry while remaining effective in killing human tumour cells. To this end, the open reading frame of the V protein, an avian specific type I interferon antagonist, was disrupted by introducing multiple mutations. NDV with a mutated V gene was attenuated in avian cells and chicken and duck eggs. Although this virus still killed tumour cells, the efficacy was reduced compared to the virulent NDV. Introduction of various mutations in the fusion (F) and hemagglutinin-neuraminidase (HN) genes slightly improved this efficacy. Taken together, these data demonstrated that NDV with a MBCS but with abrogation of the V protein ORF and mutations in the F and HN genes can be safe for evaluation in oncolytic viral therapy.


Assuntos
Neoplasias/terapia , Vírus da Doença de Newcastle/genética , Terapia Viral Oncolítica , Vírus Oncolíticos , Proteínas Estruturais Virais/genética , Células A549 , Animais , Apoptose/genética , Calibragem , Proteínas do Capsídeo/genética , Células Cultivadas , Embrião de Galinha , Chlorocebus aethiops , Patos/embriologia , Proteína HN/genética , Humanos , Mutagênese Sítio-Dirigida/métodos , Neoplasias/patologia , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/fisiologia , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Terapia Viral Oncolítica/normas , Vírus Oncolíticos/genética , Vírus Oncolíticos/patogenicidade , Vírus Oncolíticos/fisiologia , Fases de Leitura Aberta/genética , Segurança do Paciente , Microambiente Tumoral/genética , Células Vero , Proteínas Virais de Fusão/efeitos adversos , Proteínas Virais de Fusão/genética , Virulência/genética , Replicação Viral/genética
4.
PLoS One ; 16(3): e0244770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780466

RESUMO

The inhibitory signaling of CD200 receptor 1 (CD200R) has been attributed to its NPxY signaling motif. However, NPxY-motifs are present in multiple protein families and are mostly known to mediate protein trafficking between subcellular locations rather than signaling. Therefore, we investigated whether additional motifs specify the inhibitory function of CD200R. We performed phylogenetic analysis of the intracellular domain of CD200R in mammals, birds, bony fish, amphibians and reptiles. Indeed, the tyrosine of the NPxY-motif is fully conserved across species, in line with its central role in CD200R signaling. In contrast, P295 of the NPxY-motif is not conserved. Instead, a conserved stretch of negatively charged amino acids, EEDE279, and two conserved residues P285 and K292 in the flanking region prior to the NPxY-motif are required for CD200R mediated inhibition of p-Erk, p-Akt308, p-Akt473, p-rpS6 and LPS-induced IL-8 secretion. Altogether, we show that instead of the more common NPxY-motif, CD200R signaling can be assigned to a unique signaling motif in mammals defined by: EEDExxPYxxYxxKxNxxY.


Assuntos
Receptores de Orexina/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mutagênese Sítio-Dirigida , Receptores de Orexina/química , Receptores de Orexina/classificação , Receptores de Orexina/genética , Fosforilação , Filogenia , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA