Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomark Res ; 12(1): 38, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594765

RESUMO

BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.

2.
Cell Mol Life Sci ; 80(6): 141, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149819

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis. METHODS: We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC-MS/MS analyses were performed using a Q Exactive mass spectrometer. RESULTS: In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals. CONCLUSIONS: We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-ß (Aß) fibers in vitro, and PMP2 to associate with Aß plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Demência Frontotemporal/genética , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos beta-Amiloides/metabolismo , Córtex Pré-Frontal/metabolismo , Biomarcadores , Proteínas tau/metabolismo
3.
J Pathol Clin Res ; 8(6): 495-508, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134447

RESUMO

The necessity to accurately predict recurrence and clinical outcome in early stage colorectal cancer (CRC) is critical to identify those patients who may benefit from adjuvant chemotherapy. Here, we developed and validated a gene-based risk-score algorithm for patient stratification and personalised treatment in early stage disease based on alterations in the secretion of metastasis-related proteins. A quantitative label-free proteomic analysis of the secretome of highly and poorly metastatic CRC cell lines with different genetic backgrounds revealed 153 differentially secreted proteins (fold-change >5). These changes in the secretome were validated at the transcriptomic level. Starting from 119 up-regulated proteins, a six-gene/protein-based prognostic signature composed of IGFBP3, CD109, LTBP1, PSAP, BMP1, and NPC2 was identified after sequential discovery, training, and validation in four different cohorts. This signature was used to develop a risk-score algorithm, named SEC6, for patient stratification. SEC6 risk-score components showed higher expression in the poor prognosis CRC subtypes: consensus molecular subtype 4 (CMS4), CRIS-B, and stem-like. High expression of the signature was also associated with patients showing dMMR, CIMP+ status, and BRAF mutations. In addition, the SEC6 signature was associated with lower overall survival, progression-free interval, and disease-specific survival in stage II and III patients. SEC6-based risk stratification indicated that 5-FU treatment was beneficial for low-risk patients, whereas only aggressive treatments (FOLFOX and FOLFIRI) provided benefits to high-risk patients in stages II and III. In summary, this novel risk-score demonstrates the value of the secretome compartment as a reliable source for the retrieval of biomarkers with high prognostic and chemotherapy-predictive capacity, providing a potential new tool for tailoring decision-making in patient care.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Biomarcadores Tumorais/análise , Neoplasias do Colo/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fluoruracila/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Prognóstico , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Secretoma , Transcriptoma
4.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159257

RESUMO

Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Pulmonares , Neoplasias Retais , Neoplasias Colorretais/patologia , Humanos , Fígado/metabolismo , Linfonodos/patologia , Proteômica/métodos
6.
J Am Chem Soc ; 143(40): 16486-16501, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34477370

RESUMO

Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and ß-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 µs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.


Assuntos
Metalotioneína
7.
Cancers (Basel) ; 13(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672863

RESUMO

Low-grade, early-stage endometrial carcinoma (EC) is the most frequent malignant tumor of the uterine corpus. However, the molecular alterations that underlie these tumors are far from being fully understood. The purpose of this study is to describe dysregulated molecular pathways from EC patients. Sixteen samples of tumor tissue and paired healthy controls were collected and both were subjected to mass spectrometry (MS)/MS proteomic analysis. Gene ontology and pathway analysis was performed to discover dysregulated pathways and/or proteins using different databases and bioinformatic tools. Dysregulated pathways were cross-validated in an independent external cohort. Cell signaling, immune response, and cell death-associated pathways were robustly identified. The SLIT/ROBO signaling pathway demonstrated dysregulation at the proteomic and transcriptomic level. Necroptosis and ferroptosis were cell death-associated processes aberrantly regulated, in addition to apoptosis. Immune response-associated pathways showed a dominance of innate immune responses. Tumor immune infiltrates measured by immunofluorescence demonstrated diverse lymphoid and myeloid populations. Our results suggest a role of SLIT/ROBO, necroptosis, and ferroptosis, as well as a prominent role of innate immune response in low-grade, early-stage EC. These results could guide future research in this group of tumors.

8.
Sci Rep ; 11(1): 5496, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750814

RESUMO

Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metalotioneína 3/biossíntese , Proteínas de Neoplasias/biossíntese , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Metalotioneína 3/genética , Proteínas de Neoplasias/genética
9.
Oncogene ; 39(38): 6085-6098, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32801337

RESUMO

The mechanistic basis of liver metastasis in colorectal cancer remains poorly understood. We previously reported that the sclerostin domain containing-1 (SOSTDC1) protein is overexpressed in the secretome of metastatic colorectal cancer cells and can inhibit liver homing. Here, we investigated the mechanisms of SOSTDC1 for promoting invasiveness and progression of colorectal cancer liver metastasis. SOSTDC1 inhibition of BMP4 maintains the expression of cancer stem cell traits, including SOX2 and NANOG. Immunoprecipitation and mass spectrometry analyses reveal the association of SOSTDC1 with ALCAM/CD166, which was confirmed by confocal microscopy and competition ELISA. Interaction with ALCAM is mediated by the N-terminal region of SOSTDC1, which contains a sequence similar to the ALCAM-binding motif used by CD6. Knocking down either SOSTDC1 or ALCAM expression, or using blocking antibodies, reduces the invasive activity by inhibiting Src and PI3K/AKT signaling pathways. In addition, ALCAM interacts with the α2ß1 and α1ß1 integrins, providing a possible link to Src activation. Finally, inoculation of SOSTDC1-silenced metastatic cells increases mouse survival by inhibiting liver metastasis. In conclusion, SOSTDC1 promotes invasion and liver metastasis in colorectal cancer, by overcoming BMP4-specific antimetastatic signals and inducing ALCAM-mediated Src and PI3K/AKT activation. These experiments underscore the potential of SOSTDC1 as a therapeutic target in metastatic colorectal cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas Fetais/metabolismo , Neoplasias Hepáticas/secundário , Actinas/química , Actinas/metabolismo , Animais , Biomarcadores Tumorais , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
10.
mBio ; 11(2)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291306

RESUMO

RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation.


Assuntos
Proteínas de Bactérias/metabolismo , Junções Intercelulares/microbiologia , Príons/metabolismo , Animais , Proteínas de Bactérias/síntese química , Linhagem Celular Tumoral , Técnicas de Cocultura , Células HeLa , Humanos , Fusão de Membrana , Camundongos , Neuroblastoma , Príons/síntese química
11.
Cancers (Basel) ; 12(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098194

RESUMO

Background: Interleukin 13 receptor alpha 2 subunit (IL13Rα2) is overexpressed in glioblastoma (GBM), metastatic colorectal cancer (CRC) and ovarian cancer (OC). Here, we investigated the IL13Rα2 interactome searching for novel targets in cancer invasion and metastasis. Methods: The interactome of IL13Rα2 was determined in GBM by using a proteomic analysis and then validated in CRC and OC. Cell signaling was investigated using siRNA interference, protein tyrosine phosphatase-1B (PTP1B) inhibitors and Western blot analysis. Animal models of GBM and metastatic CRC were used for testing PTP1B inhibitors. Results: PTP1B was identified and validated as a mediator of IL13Rα2 signaling. An in silico analysis revealed that PTP1B overexpression is associated with lower overall survival of patients in the three types of cancer. PTP1B silencing or treatment with Claramine, a PTP1B inhibitor, caused a significant decrease in IL-13-mediated adhesion, migration and invasion of IL13Rα2-expressing cancer cells by inhibiting the dephosphorylation of Src Tyr530 and consequently, the phosphorylation of Src Tyr419, AKT and ERK1/2. In addition, Claramine inhibited EGF-mediated activation of EGFR Tyr1068. In vivo treatment with Claramine caused a total inhibition of liver metastasis in mice inoculated with CRC cells and a significant increase in the survival of mice bearing intracranial GBM patient-derived xenografts. Conclusions: We have uncovered that IL13 signaling through IL13Rα2 requires PTP1B activity and therefore, PTP1B inhibition represents a promising therapeutic strategy in multiple types of cancer, including glioblastoma.

12.
J Proteomics ; 214: 103635, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918032

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer related death worldwide. Its diagnosis at early stages would significantly improve the survival of CRC patients. The humoral immune response has been demonstrated useful for cancer diagnosis, predating clinical symptoms up to 3 years. Here, we employed an in-depth seroproteomic approach to identify proteins that elicit a humoral immune response in CRC patients. The seroproteomic approach relied on the immunoprecipitation with patient-derived autoantibodies of proteins from CRC cell lines with different metastatic properties followed by LC-MS/MS. After bioinformatics, we focused on 31 targets of CRC autoantibodies. After WB and IHC validation, ERP44 and TALDO1 showed potential to discriminate disease-free and metastatic CRC patients, and time to recurrence of CRC patients in stage II. Using plasma samples of 30 healthy individuals, 28 premalignant individuals, and 32 CRC patients, nine out of 13 selected targets for seroreactive analysis showed significant diagnostic ability to discriminate either CRC patients or premalignant subjects from controls. Our results suggest that the here defined panel of CRC autoantibodies and their target proteins should be included in CRC blood-based biomarker panels to get a clinically useful blood-based diagnostic signature for CRC detection. SIGNIFICANCE: Colorectal cancer is one of the deadliest cancer types mainly due to its late diagnosis. Its early diagnosis, therefore, is of great importance since it would significantly improve the survival of CRC patients. In our work, the in-depth seroproteomic analysis of colorectal cancer using isolated IgGs from colorectal cancer patients and controls and protein extract of colorectal cancer cells provide the identification of valuable biomarkers with diagnostic and prognostic ability of the disease.


Assuntos
Neoplasias Colorretais , Biomarcadores Tumorais , Cromatografia Líquida , Neoplasias Colorretais/diagnóstico , Humanos , Prognóstico , Espectrometria de Massas em Tandem
13.
Thromb Haemost ; 120(2): 262-276, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31901221

RESUMO

C-type lectin-like receptor 2 (CLEC-2) plays a crucial role in different platelet-related physiological and pathological processes. It signals through a tyrosine kinase-mediated pathway that is highly dependent on the positive feedback exerted by the platelet-derived secondary mediators, adenosine diphosphate (ADP) and thromboxane A2 (TXA2). Here, we aimed to analyze the tyrosine phosphoproteome of platelets activated with the CLEC-2 agonist rhodocytin to identify relevant phosphorylated tyrosine residues (p-Tyr) and proteins involved in platelet activation downstream of this receptor. We identified 363 differentially p-Tyr residues, corresponding to the majority of proteins previously known to participate in CLEC-2 signaling and also novel ones, including adaptors (e.g., DAPP1, Dok1/3, CASS4, Nck1/2), kinases/phosphatases (e.g., FAK1, FES, FGR, JAK2, SHIP2), and membrane proteins (e.g., G6F, JAM-A, PECAM-1, TLT-1). To elucidate the contribution of ADP and TXA2 at different points of the CLEC-2 signaling cascade, we evaluated p-Tyr levels of residues identified in the analysis and known to be essential for the catalytic activity of kinases Syk(p-Tyr525+526) and Src(p-Tyr419), and for PLCγ2 activity (p-Tyr759). We demonstrated that Syk phosphorylation at Tyr525+526 also happens in the presence of ADP and TXA2 inhibitors, which is not the case for Src-pTyr419 and PLCγ2-pTyr759. Kinetics studies for the three phosphoproteins show some differences in the phosphorylation profile. Ca2+ mobilization assays confirmed the relevance of ADP and TXA2 for full CLEC-2-mediated platelet activation. The present study provides significant insights into the intracellular events that take place following CLEC-2 activation in platelets, contributing to elucidate in detail the CLEC-2 signalosome.


Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Fosfoproteínas/química , Transdução de Sinais , Tirosina/química , Difosfato de Adenosina/química , Adulto , Cálcio/química , Cálcio/metabolismo , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Fosforilação , Fosfotirosina/química , Ativação Plaquetária , Agregação Plaquetária , Proteoma , Tromboxano A2/química , Adulto Jovem
14.
Carcinogenesis ; 41(2): 203-213, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31095674

RESUMO

Pancreatic adenocarcinoma upregulated factor (PAUF), also known as ZG16B, was previously found in the secretome of metastatic colorectal cancer cells. Here, we demonstrated the presence of PAUF at the intracellular level and its multiple effects on cancer progression. An initial decline of PAUF expression was observed at early stages of colorectal cancer followed by an increase at the metastatic site. PAUF was located at different cellular compartments: membrane-associated vesicles, endosomes, microtubule-associated vesicles, cell growth cones and the cell nucleus. PAUF loss in two colorectal cancer cell lines caused severe alterations in the cell phenotype and cell cycle, including tetraploidy, extensive genomic alterations, micronuclei and increased apoptosis. An exhaustive analysis of the PAUF interactome using different proteomic approaches revealed the presence of multiple components of the cell cycle, mitotic checkpoint, Wnt pathway and intracellular transport. Among the interacting proteins we found ZW10, a moonlighting protein with a dual function in membrane trafficking and mitosis. In addition, PAUF silencing was associated to APC loss and increased ß-catenin nuclear expression. Altogether, our results suggest that PAUF depletion increases aneuploidy, promotes apoptosis and activates the Wnt/ß-catenin pathway in colorectal cancer cells facilitating cancer progression. In summary, PAUF behaves as a multifunctional protein, with different roles in cancer progression according to the extra- or intracellular expression, suggesting a therapeutic value for colorectal cancer.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Neoplasias Colorretais/patologia , Lectinas/metabolismo , Neoplasias Hepáticas/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/metabolismo , Aneuploidia , Linhagem Celular Tumoral , Colo/patologia , Neoplasias Colorretais/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lectinas/genética , Fígado/patologia , Neoplasias Hepáticas/secundário , Mapeamento de Interação de Proteínas , Proteômica , Reto/patologia , Regulação para Cima
15.
Proteomics Clin Appl ; 14(1): e1900052, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502404

RESUMO

PURPOSE: Successful prevention of colorectal cancer (CRC) would benefit from a rapid serum screening for early detection. Here, a novel strategy for CRC biomarker discovery and validation exclusively based on MS procedures is reported. EXPERIMENTAL DESIGN: Identification of CRC serum biomarkers is initially made using label-free quantification on pooled serum samples from different CRC stages followed by two consecutive steps of targeted parallel reaction monitoring assays in different serum cohorts. Relevance of different protein depletion and peptide fractionation extent is investigated. Absolute quantification of a selected peptide is performed as a proof-of-concept. RESULTS: A total of 945 proteins showed differential abundance in the discovery phase. Based on their statistical significance and relative expression in disease stages, 123 potential biomarkers are selected for a training step. In the final validation step, five peptides belonging to four proteins are consistently quantified in individual CRC serum samples and controls. Different statistical analyses indicate that peptides GWVTDGFSSLK (APOC3) and LCNNPTPQFGGK (THBS1) are candidate biomarkers. Absolute quantification of LCNNPTPQFGGK shows statistical significance for the diagnosis of early respect to late CRC stages. CONCLUSIONS AND CLINICAL RELEVANCE: Two peptides from APOC3 and THBS1 are validated by PRM as potential biomarkers for non-invasive diagnosis of colorectal cancer.


Assuntos
Apolipoproteína C-III/sangue , Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Peptídeos/sangue , Trombospondinas/sangue , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Proteínas de Neoplasias/sangue , Proteoma/genética
16.
J Proteome Res ; 18(3): 1255-1263, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592607

RESUMO

Cisplatin (CDDP) is a widely used agent in the treatment of neuroblastoma. Unfortunately, the development of acquired chemoresistance limits its clinical use. To gain a detailed understanding of the mechanisms underlying the development of such chemoresistance, we comparatively analyzed established cisplatin-resistant neuroblastoma cell line (UKF-NB-4CDDP) and its sensitive counterpart (UKF-NB-4). First, using viability screenings, we confirmed the decreased sensitivity of tested cells to cisplatin and identified a cross-resistance to carboplatin and oxaliplatin. Then, the proteomic signatures were analyzed using nano liquid chromatography with tandem mass spectrometry. Among the proteins responsible for UKF-NB-4CDDP chemoresistance, ion channels transport family proteins, ATP-binding cassette superfamily proteins (ATP = adenosine triphosphate), solute carrier-mediated trans-membrane transporters, proteasome complex subunits, and V-ATPases were identified. Moreover, we detected markedly higher proteasome activity in UKF-NB-4CDDP cells and a remarkable lysosomal enrichment that can be inhibited by bafilomycin A to sensitize UKF-NB-4CDDP to CDDP. Our results indicate that lysosomal sequestration and proteasome activity may be one of the key mechanisms responsible for intrinsic chemoresistance of neuroblastoma to CDDP.


Assuntos
Cisplatino/farmacologia , Lisossomos/genética , Neuroblastoma/tratamento farmacológico , Proteômica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Complexo de Endopeptidases do Proteassoma/genética , Transcriptoma/genética
17.
Mol Biol Cell ; 23(10): 1889-901, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22456509

RESUMO

We exploit the ease with which highly motile early endosomes are distinguished from static late endosomes in order to study Aspergillus nidulans endosomal traffic. RabS(Rab7) mediates homotypic fusion of late endosomes/vacuoles in a homotypic fusion- and vacuole protein sorting/Vps41-dependent manner. Progression across the endocytic pathway involves endosomal maturation because the end products of the pathway in the absence of RabS(Rab7) are minivacuoles that are competent in multivesicular body sorting and cargo degradation but retain early endosomal features, such as the ability to undergo long-distance movement and propensity to accumulate in the tip region if dynein function is impaired. Without RabS(Rab7), early endosomal Rab5s-RabA and RabB-reach minivacuoles, in agreement with the view that Rab7 homologues facilitate the release of Rab5 homologues from endosomes. RabS(Rab7) is recruited to membranes already at the stage of late endosomes still lacking vacuolar morphology, but the transition between early and late endosomes is sharp, as only in a minor proportion of examples are RabA/RabB and RabS(Rab7) detectable in the same-frequently the less motile-structures. This early-to-late endosome/vacuole transition is coupled to dynein-dependent movement away from the tip, resembling the periphery-to-center traffic of endosomes accompanying mammalian cell endosomal maturation. Genetic studies establish that endosomal maturation is essential, whereas homotypic vacuolar fusion is not.


Assuntos
Aspergillus nidulans/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Aspergillus nidulans/fisiologia , Aspergillus nidulans/ultraestrutura , Transporte Biológico , Endocitose , Endossomos/ultraestrutura , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Membranas Intracelulares/metabolismo , Fusão de Membrana , Ligação Proteica , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Imagem com Lapso de Tempo , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética
18.
J Proteomics ; 75(2): 384-97, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21864731

RESUMO

1α,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and other vitamin D compounds are promising molecules in the prevention and therapy of colon cancer and other neoplasias. To study the mechanism of action of 1,25(OH)(2)D(3) in colon cancer cells, we carried out a comparative proteomic analysis of the nuclear fractions of SW480-ADH cells treated with 1,25(OH)(2)D(3) or vehicle during 8 or 48h. 2D-DIGE analysis combined with MALDI-TOF-TOF mass spectrometry interrogation led to the identification of 59 differentially expressed unique proteins. Most identified proteins were nuclear, but several cytoskeleton-associated proteins were also detected. A good concordance between changes in expression at protein and RNA levels was observed for the validated proteins. A large group of identified proteins, such as SFPQ, SMARCE, KHSRP, TARDBP and PARP1, were involved in RNA processing or modification and have been ascribed to the spliceosome compartment of human cells. In addition, a smaller group of proteins (ERM (Ezrin, Radixin, Moesin) family, VCL, CORO1C, ACTB) were cytoskeleton-associated and played a role in cell adhesion and morphology. These results confirm the induction of epithelial phenotype by 1,25(OH)(2)D(3) and suggest a role for vitamin D compounds in the regulation of the spliceosome and thus, in alternative splicing and possibly microRNA synthesis in colon cancer cells.


Assuntos
Calcitriol/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Proteínas do Citoesqueleto/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteômica , Splicing de RNA , Eletroforese em Gel Diferencial Bidimensional
19.
Protein Expr Purif ; 65(2): 223-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297697

RESUMO

Ribonuclease U2, secreted by the smut fungus Ustilago sphaerogena, is a cyclizing ribonuclease that displays a rather unusual specificity within the group of microbial extracellular RNases, best represented by RNase T1. Superposition of the three-dimensional structures of RNases T1 and U2 suggests that the RNase U2 His 101 would be the residue equivalent to the RNase T1 catalytically essential His 92. RNase U2 contains three disulfide bridges but only two of them are conserved among the family of fungal extracellular RNases. The non-conserved disulfide bond is established between Cys residues 1 and 54. Mispairing of the disulfide network due to the presence of two consecutive Cys residues (54 and 55) has been invoked to explain the presence of wrongly folded RNase U2 species when produced in Pichia pastoris. In order to study both hypotheses, the RNase U2 H101Q and C1/54S variants have been produced, purified, and characterized. The results obtained support the major conclusion that His 101 is required for proper protein folding when secreted by the yeast P. pastoris. On the other hand, substitution of the first Cys residue for Ser results in a mutant version which is more efficiently processed in terms of a more complete removal of the yeast alpha-factor signal peptide. In addition, it has been shown that elimination of the Cys 1-Cys 54 disulfide bridge does not interfere with RNase U2 proper folding, generating a natively folded but much less stable protein.


Assuntos
Cisteína/metabolismo , Endorribonucleases/biossíntese , Endorribonucleases/química , Histidina/metabolismo , Pichia/genética , Serina/metabolismo , Ustilago/enzimologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Endorribonucleases/metabolismo , Modelos Moleculares , Dobramento de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Ustilago/genética
20.
Clin Transl Oncol ; 8(8): 566-80, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16952845

RESUMO

The ability of Medicine to effectively treat and cure cancer is directly dependent on their capability to detect cancers at their earliest stages. The advent of proteomics has brought with it the hope of discovering novel biomarkers in the early phases of tumorigenesis that can be used to diagnose diseases, predict susceptibility, and monitor progression. This discipline incorporates technologies that can be applied to complex biosystems such as serum and tissue in order to characterize the content of, and changes in, the proteome induced by physiological changes, benign or pathologic. These tools include 2-DE, 2D-DIGE, ICAT, protein arrays, MudPIT and mass spectrometries including SELDI-TOF. The application of these tools has assisted to uncover molecular mechanisms associated with cancer at the global level and may lead to new diagnostic tests and improvements in therapeutics. In this review these approaches are evaluated in the context of their contribution to cancer biomarker discovery. Particular attention is paid to the promising contribution of the ProteinChip/SELDI-TOF platform as a revolutionary approach in proteomic patterns analysis that can be applied at the bedside for discovering protein profiles that distinguish disease and disease-free states with high sensitivity and specificity. Understanding the basic concepts and tools used will illustrate how best to apply these technologies for patient benefit for the early cancer detection and improved patient care.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias/diagnóstico , Neoplasias/genética , Proteoma/análise , Proteômica/tendências , Humanos , Análise Serial de Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA