Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36771251

RESUMO

Cocoa, rich in polyphenols, has been reported to provide many health benefits due to its antioxidant properties. In this study, we investigated the effect of Cocoa polyphenols extract (CPE) against oxidative stress-induced cellular senescence using a hydrogen peroxide (H2O2)-induced cellular senescence model in three auditory cells lines derived from the auditory organ of a transgenic mouse: House Ear Institute-Organ of Corti 1 (HEI-OC1), Organ of Corti-3 (OC-k3), and Stria Vascularis (SV-k1) cells. Our results showed that CPE attenuated senescent phenotypes, including senescence-associated ß-galactosidase expression, cell proliferation, alterations of morphology, oxidative DNA damage, mitochondrial dysfunction by inhibiting mitochondrial reactive oxygen species (mtROS) generation, and related molecules expressions such as forkhead box O3 (FOXO3) and p53. In addition, we determined that CPE induces expression of sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), and it has a protective role against cellular senescence by upregulation of SIRT1 and SIRT3. These data indicate that CPE protects against senescence through SIRT1, SIRT3, FOXO3, and p53 in auditory cells. In conclusion, these results suggest that Cocoa has therapeutic potential against age-related hearing loss (ARHL).


Assuntos
Sirtuína 1 , Sirtuína 3 , Camundongos , Animais , Sirtuína 1/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Polifenóis/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Senescência Celular , Estresse Oxidativo , Camundongos Transgênicos
2.
Antioxidants (Basel) ; 11(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892652

RESUMO

Presbycusis or Age-related hearing loss (ARHL) is a sensorineural hearing loss that affects communication, leading to depression and social isolation. Currently, there are no effective treatments against ARHL. It is known that cocoa products have high levels of polyphenol content (mainly flavonoids), that are potent anti-inflammatory and antioxidant agents with proven benefits for health. The objective is to determine the protective effect of cocoa at the cellular and molecular levels in Presbycusis. For in vitro study, we used House Ear Institute-Organ of Corti 1 (HEI-OC1), stria vascularis (SV-k1), and organ of Corti (OC-k3) cells (derived from the auditory organ of a transgenic mouse). Each cell line was divided into a control group (CTR) and an H2O2 group (induction of senescence by an oxygen radical). Additionally, every group of every cell line was treated with the cocoa polyphenolic extract (CPE), measuring different markers of apoptosis, viability, the activity of antioxidant enzymes, and oxidative/nitrosative stress. The data show an increase of reactive oxidative and nitrogen species (ROS and RNS, respectively) in senescent cells compared to control ones. CPE treatment effectively reduced these high levels and correlated with a significant reduction in apoptosis cells by inhibiting the mitochondrial-apoptotic pathway. Furthermore, in senescence cells, the activity of antioxidant enzymes (Superoxide dismutase, SOD; Catalase, CAT; and Glutathione peroxidase, GPx) was recovered after CPE treatment. Administration of CPE also decreased oxidative DNA damage in the auditory senescent cells. In conclusion, CPE inhibits the activation of senescence-related apoptotic signaling by decreasing oxidative stress in auditory senescent cells.

3.
Planta Med ; 88(13): 1245-1255, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35226949

RESUMO

The gut microbiota has emerged as a factor that influences exercise performance and recovery. The present study aimed to test the effect of a polyherbal supplement containing ginger and annatto called "ReWin(d)" on the gut microbiota of recreational athletes in a pilot, randomized, triple-blind, placebo-controlled trial. Thirty-four participants who practice physical activity at least three times weekly were randomly allocated to two groups, a ReWin(d) group or a maltodextrin (placebo) group. We evaluated the gut microbiota, the production of short-chain fatty acids, and the serum levels of interleukin-6 and lipopolysaccharide at baseline and after 4 weeks. Results showed that ReWin(d) supplementation slightly increased gut microbiota diversity. Pairwise analysis revealed an increase in the relative abundance of Lachnospira (ß-coefficient = 0.013; p = 0.001), Subdoligranulum (ß-coefficient = 0.016; p = 0.016), Roseburia (ß-coefficient = 0.019; p = 0.001), and Butyricicoccus (ß-coefficient = 0.005; p = 0.035) genera in the ReWin(d) group, and a decrease in Lachnoclostridium (ß-coefficient = - 0.008; p = 0.009) and the Christensenellaceae R7 group (ß-coefficient = - 0.010; p < 0.001). Moreover, the Christensenellaceae R-7 group correlated positively with serum interleukin-6 (ρ = 0.4122; p = 0.032), whereas the Lachnospira genus correlated negatively with interleukin-6 (ρ = - 0.399; p = 0.032). ReWin(d) supplementation had no effect on short-chain fatty acid production or on interleukin-6 or lipopolysaccharide levels.


Assuntos
Microbioma Gastrointestinal , Zingiber officinale , Humanos , Bixaceae , Interleucina-6/farmacologia , Lipopolissacarídeos/farmacologia , Fezes , Suplementos Nutricionais , Ácidos Graxos Voláteis/farmacologia , Atletas
4.
PLoS One ; 16(2): e0246261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571276

RESUMO

Ultrasound is considered a safe and non-invasive tool in regenerative medicine and has been used in the clinic for more than twenty years for applications in bone healing after the approval of the Exogen device, also known as low-intensity pulsed ultrasound (LIPUS). Beyond its effects on bone health, LIPUS has also been investigated for wound healing of soft tissues, with positive results for various cell processes including cell proliferation, migration and angiogenesis. As LIPUS has the potential to treat chronic skin wounds, we sought to evaluate the effects produced by a conventional therapeutic ultrasound device at low intensities (also considered LIPUS) on the migration capacity of mouse and human skin mesenchymal precursors (s-MPs). Cells were stimulated for 3 days (20 minutes per day) using a traditional ultrasound device with the following parameters: 100 mW/cm2 with 20% duty cycle and frequency of 3 MHz. At the parameters used, ultrasound failed to affect s-MP proliferation, with no evident changes in morphology or cell groupings, and no changes at the cytoskeletal level. Further, the migration and invasion ability of s-MPs were unaffected by the ultrasound protocol, and no major changes were detected in the gene/protein expression of ROCK1, integrin ß1, laminin ß1, type I collagen and transforming growth factor ß1. Finally, RNA-seq analysis revealed that only 10 genes were differentially expressed after ultrasound stimulation. Among them, 5 encode for small nuclear RNAs and 2 encode for proteins belonging to the nuclear pore complex. Considering the results overall, while the viability of s-MPs was not affected by ultrasound stimulation and no changes were detected in proliferation/migration, RNA-seq analysis would suggest that s-MPs do respond to ultrasound. The use of 100 mW/cm2 intensity or conventional therapeutic ultrasound devices might not be optimal for the stimulation the properties of cell populations. Future studies should investigate the potential application of ultrasound using variations of the tested parameters.


Assuntos
Células-Tronco Mesenquimais/efeitos da radiação , Terapia por Ultrassom , Ondas Ultrassônicas , Animais , Western Blotting , Movimento Celular/efeitos da radiação , Citoesqueleto/efeitos da radiação , Humanos , Camundongos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/efeitos da radiação , Terapia por Ultrassom/efeitos adversos , Terapia por Ultrassom/métodos , Ondas Ultrassônicas/efeitos adversos , Cicatrização/efeitos da radiação
5.
Genes (Basel) ; 11(9)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957737

RESUMO

Ultrasound has emerged as a novel tool for clinical applications, particularly in the context of regenerative medicine. Due to its unique physico-mechanical properties, low-intensity ultrasound (LIUS) has been approved for accelerated fracture healing and for the treatment of established non-union, but its utility has extended beyond tissue engineering to other fields, including cell regeneration. Cells and tissues respond to acoustic ultrasound by switching on genetic repair circuits, triggering a cascade of molecular signals that promote cell proliferation, adhesion, migration, differentiation, and extracellular matrix production. LIUS also induces angiogenesis and tissue regeneration and has anti-inflammatory and anti-degenerative effects. Accordingly, the potential application of ultrasound for tissue repair/regeneration has been tested in several studies as a stand-alone treatment and, more recently, as an adjunct to cell-based therapies. For example, ultrasound has been proposed to improve stem cell homing to target tissues due to its ability to create a transitional and local gradient of cytokines and chemokines. In this review, we provide an overview of the many applications of ultrasound in clinical medicine, with a focus on its value as an adjunct to cell-based interventions. Finally, we discuss the various preclinical and clinical studies that have investigated the potential of ultrasound for regenerative medicine.


Assuntos
Medicina Regenerativa , Células-Tronco/citologia , Ondas Ultrassônicas , Animais , Humanos , Células-Tronco/efeitos da radiação
6.
Methods Mol Biol ; 2002: 29-38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30097969

RESUMO

It has been described that adult tissues contain mesenchymal stem cell populations. The specific areas where stem cells reside are known as niches. Crosstalk between cells and their niche is essential to maintain the correct functionality of stem cell. MSCs present a set of abilities such as migration, invasion, and angiogenic potentials, which make them ideal candidates for cell-based therapies. In order to test the regenerative capacity of these cells, we have described a methodology for the collection and for the evaluation of these mesenchymal precursors from different niches.


Assuntos
Diferenciação Celular , Movimento Celular , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Nicho de Células-Tronco/fisiologia , Animais , Proliferação de Células , Camundongos , Camundongos Endogâmicos C57BL , Medicina Regenerativa
7.
Cell Physiol Biochem ; 46(5): 1999-2016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723858

RESUMO

The stem cell field has grown very rapidly during the last decade, offering the promise of innovative therapies to treat disease. Different stem cell populations have been isolated from various human adult tissues, mainly from bone marrow and adipose tissue, but many other body tissues harbor a stem cell population. Adult tissue stem cells are invariably found in discrete microenvironments termed niches, where they play key roles in tissue homeostasis by enabling lifelong optimization of organ form and function. Some diseases are known to strike at the stem cell population, through alterations in their specific microenvironments, making them non-viable. Furthermore, it has been shown that a transformed stem cell population could prompt the development of certain cancers. This review focuses on the potential negative aspects of a range of diseases on the activity of stem cells and how their potential use in cell therapies may be affected.


Assuntos
Nicho de Células-Tronco , Células-Tronco/patologia , Envelhecimento , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo
8.
J Cell Mol Med ; 22(2): 746-754, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29214727

RESUMO

Cell migration is an essential process throughout the life of vertebrates, beginning during embryonic development and continuing throughout adulthood. Stem cells have an inherent ability to migrate, that is as important as their capacity for self-renewal and differentiation, enabling them to maintain tissue homoeostasis and mediate repair and regeneration. Adult stem cells reside in specific tissue niches, where they remain in a quiescent state until called upon and activated by tissue environmental signals. Cell migration is a highly regulated process that involves the integration of intrinsic signals from the niche and extrinsic factors. Studies using three-dimensional in vitro models have revealed the astonishing plasticity of cells in terms of the migration modes employed in response to changes in the microenvironment. These same properties can, however, be subverted during the development of some pathologies such as cancer. In this review, we describe the response of adult stem cells to migratory stimuli and the mechanisms by which they sense and transduce intracellular signals involved in migratory processes. Understanding the molecular events underlying migration may help develop therapeutic strategies for regenerative medicine and to treat diseases with a cell migration component.


Assuntos
Células-Tronco Adultas/citologia , Movimento Celular , Animais , Humanos , Modelos Biológicos
9.
Mol Genet Metab Rep ; 12: 51-56, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28580301

RESUMO

Adipose tissue is a significant source of mesenchymal stem cells for regenerative therapies; however, caution should be taken as their environmental niche can affect their functional properties. We have previously demonstrated the negative impact of obesity on the function of adipose-derived stem cells (ASCs). Here we have evaluated other possible properties and targets that are altered by obesity such as the recently described long non-coding molecule Gas5, which is involved in glucocorticoid resistance. Using ASCs isolated from obese (oASCs) and control subjects (cASCs), we have analyzed additional metabolic and inflammatory conditions that could be related with their impaired therapeutic potential and consequently their possible usefulness in the clinic.

10.
PLoS One ; 11(3): e0150004, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930466

RESUMO

Mesenchymal precursors (MPs) present some advantageous features, such as differentiation and migration, which make them promising candidates for cell therapy. A better understanding of MP migration characteristics would aid the development of cell delivery protocols. Traditionally, cell migration is thought to occur only through the formation of lamellipodia. More recently, contractility-driven bleb formation has emerged as an alternative mechanism of motility. Here we report that MPs derived from different tissues present spontaneously dynamic cytoplasmic projections in sub-confluent culture, which appear as a combination of lamellipodia with blebs in the leading edge. Upon initial seeding, however, only bleb structures could be observed. Immunofluorescence revealed the presence of pERM, RhoA and F-actin during the blebbing process. Results from migration assays in the presence of blebbistatin, a myosin II inhibitor, showed that bleb formation correlated with migratory capacity, suggesting a functional role for blebs in migration. Bleb formation might be a useful mechanism to improve cell migration in cellular therapy protocols.


Assuntos
Membrana Celular/metabolismo , Movimento Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pseudópodes/metabolismo , Proteína rhoA de Ligação ao GTP
11.
Stem Cell Rev Rep ; 11(6): 852-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26201830

RESUMO

Cell-based therapy is a promising approach for many diseases, including ischemic heart disease. Cardiac mesoangioblasts are committed vessel-associated progenitors that can restore to a significant, although partial, extent, heart structure and function in a murine model of myocardial infarction. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive form of mechanical energy that can be delivered into biological tissues as acoustic pressure waves, and is widely used for clinical applications including bone fracture healing. We hypothesized that the positive effects of LIPUS on bone and soft tissue, such as increased cell differentiation and cytoskeleton reorganization, could be applied to increase the therapeutic potential of mesoangioblasts for heart repair. In this work, we show that LIPUS stimulation of cardiac mesoangioblasts isolated from mouse and human heart results in significant cellular modifications that provide beneficial effects to the cells, including increased malleability and improved motility. Additionally, LIPUS stimulation increased the number of binucleated cells and induced cardiac differentiation to an extent comparable with 5'-azacytidine treatment. Mechanistically, LIPUS stimulation activated the BMP-Smad signalling pathway and increased the expression of myosin light chain-2 together with upregulation of ß1 integrin and RhoA, highlighting a potentially important role for cytoskeleton reorganization. Taken together, these results provide functional evidence that LIPUS might be a useful tool to explore in the field of heart cell therapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Infarto do Miocárdio/terapia , Células-Tronco/citologia , Células-Tronco/diagnóstico por imagem , Ondas Ultrassônicas , Animais , Azacitidina/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Perfilação da Expressão Gênica , Ventrículos do Coração/citologia , Humanos , Camundongos , Transdução de Sinais , Proteínas Smad/metabolismo , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA