Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Endocrinol ; 189(1): 123-131, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37440712

RESUMO

BACKGROUND: Maternal inactivating GNAS mutations lead to pseudohypoparathyroidism 1A (PHP1A), newly classified as inactivating parathyroid hormone (PTH)/PTHrP-signaling disorder type 2 of maternal inheritance (iPPSD2). Patients present with resistance to PTH and other hormones, subcutaneous ossifications, brachydactyly, short stature, and early-onset obesity. They can be born small for gestational age (SGA) and may present with growth hormone (GH) deficiency. The use of recombinant human GH (rhGH) therapy has been sporadically reported, yet we lack data on the long-term efficacy and safety of rhGH, as well as on adult height. OBJECTIVE: Our multicenter, retrospective, observational study describes growth in patients treated with rhGH in comparison with untreated iPPSD2/PHP1A controls. METHODS: We included 190 patients, of whom 26 received rhGH. Height, weight, body mass index at various time points, and adult height were documented. We analyzed the effect of rhGH on adult height by using linear mixed models. RESULTS: Adult height was available for 11/26 rhGH-treated individuals and for 69/164 controls. Patients treated with rhGH showed a gain in height of 0.7 standard deviation scores (SDS) after 1 year (CI +0.5 to +0.8, P < .001) and of 1.5 SDS after 3 years (CI +1.0 to +2.0, P < .001). Additionally, there was a clear beneficial impact of rhGH on adult height when compared with untreated controls, with a difference of 1.9 SDS (CI +1.1 to +2.7, P < .001). Body mass index SDS did not vary significantly upon rhGH therapy. CONCLUSION: Recombinant human growth hormone treatment of iPPSD2/PHP1A patients with short stature improves growth and adult height. More studies are needed to confirm long-term efficacy and safety.


Assuntos
Nanismo Hipofisário , Hormônio do Crescimento Humano , Hipopituitarismo , Pseudo-Hipoparatireoidismo , Humanos , Adulto , Hormônio do Crescimento/genética , Estudos Retrospectivos , Pseudo-Hipoparatireoidismo/genética , Mutação , Estatura , Proteínas Recombinantes , Transtornos do Crescimento , Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética
2.
Clin Epigenetics ; 14(1): 143, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345041

RESUMO

BACKGROUND: Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci. Most imprinting disorders are diagnosed by stepwise analysis of gene dosage and methylation of single loci, but some laboratories assay a panel of loci associated with different imprinting disorders. We looked into the experience of several laboratories using single-locus and/or multi-locus diagnostic testing to explore how different testing strategies affect diagnostic outcomes and whether multi-locus testing has the potential to increase the diagnostic efficiency or reveal unforeseen diagnoses. RESULTS: We collected data from 11 laboratories in seven countries, involving 16,364 individuals and eight imprinting disorders. Among the 4721 individuals tested for the growth restriction disorder Silver-Russell syndrome, 731 had changes on chromosomes 7 and 11 classically associated with the disorder, but 115 had unexpected diagnoses that involved atypical molecular changes, imprinted loci on chromosomes other than 7 or 11 or multi-locus imprinting disorder. In a similar way, the molecular changes detected in Beckwith-Wiedemann syndrome and other imprinting disorders depended on the testing strategies employed by the different laboratories. CONCLUSIONS: Based on our findings, we discuss how multi-locus testing might optimise diagnosis for patients with classical and less familiar clinical imprinting disorders. Additionally, our compiled data reflect the daily life experiences of diagnostic laboratories, with a lower diagnostic yield than in clinically well-characterised cohorts, and illustrate the need for systematising clinical and molecular data.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Impressão Genômica , Metilação de DNA , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Transtornos do Crescimento/genética , Técnicas e Procedimentos Diagnósticos
3.
Hum Mol Genet ; 26(20): 3883-3894, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016851

RESUMO

Type 2 acrodysostosis (ACRDYS2), a rare developmental skeletal dysplasia characterized by short stature, severe brachydactyly and facial dysostosis, is caused by mutations in the phosphodiesterase (PDE) 4D (PDE4D) gene. Several arguments suggest that the mutations should result in inappropriately increased PDE4D activity, however, no direct evidence supporting this hypothesis has been presented, and the functional consequences of the mutations remain unclear. We evaluated the impact of four different PDE4D mutations causing ACRDYS2 located in different functional domains on the activity of PDE4D3 expressed in Chinese hamster ovary cells. Three independent approaches were used: the direct measurement of PDE activity in cell lysates, the evaluation of intracellular cAMP levels using an EPAC-based (exchange factor directly activated by cAMP) bioluminescence resonance energy transfer sensor , and the assessment of PDE4D3 activation based on electrophoretic mobility. Our findings indicate that PDE4D3s carrying the ACRDYS2 mutations are more easily activated by protein kinase A-induced phosphorylation than WT PDE4D3. This occurs over a wide range of intracellular cAMP concentrations, including basal conditions, and result in increased hydrolytic activity. Our results provide new information concerning the mechanism whereby the mutations identified in the ACRDYS2 dysregulate PDE4D activity, and give insights into rare diseases involving the cAMP signaling pathway. These findings may offer new perspectives into the selection of specific PDE inhibitors and possible therapeutic intervention for these patients.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Disostoses/genética , Deficiência Intelectual/genética , Osteocondrodisplasias/genética , Adulto , Animais , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Disostoses/enzimologia , Disostoses/metabolismo , Ativação Enzimática , Feminino , Humanos , Deficiência Intelectual/enzimologia , Deficiência Intelectual/metabolismo , Mutação , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/metabolismo , Fosforilação , Transdução de Sinais
4.
Eur J Endocrinol ; 175(6): P1-P17, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27401862

RESUMO

OBJECTIVE: Disorders caused by impairments in the parathyroid hormone (PTH) signalling pathway are historically classified under the term pseudohypoparathyroidism (PHP), which encompasses rare, related and highly heterogeneous diseases with demonstrated (epi)genetic causes. The actual classification is based on the presence or absence of specific clinical and biochemical signs together with an in vivo response to exogenous PTH and the results of an in vitro assay to measure Gsa protein activity. However, this classification disregards other related diseases such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), as well as recent findings of clinical and genetic/epigenetic background of the different subtypes. Therefore, the EuroPHP network decided to develop a new classification that encompasses all disorders with impairments in PTH and/or PTHrP cAMP-mediated pathway. DESIGN AND METHODS: Extensive review of the literature was performed. Several meetings were organised to discuss about a new, more effective and accurate way to describe disorders caused by abnormalities of the PTH/PTHrP signalling pathway. RESULTS AND CONCLUSIONS: After determining the major and minor criteria to be considered for the diagnosis of these disorders, we proposed to group them under the term 'inactivating PTH/PTHrP signalling disorder' (iPPSD). This terminology: (i) defines the common mechanism responsible for all diseases; (ii) does not require a confirmed genetic defect; (iii) avoids ambiguous terms like 'pseudo' and (iv) eliminates the clinical or molecular overlap between diseases. We believe that the use of this nomenclature and classification will facilitate the development of rationale and comprehensive international guidelines for the diagnosis and treatment of iPPSDs.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Hormônio Paratireóideo , Pseudo-Hipoparatireoidismo/classificação , Pseudo-Hipoparatireoidismo/diagnóstico , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/classificação , Doenças Ósseas Metabólicas/diagnóstico , Disostoses/sangue , Disostoses/classificação , Disostoses/diagnóstico , Europa (Continente) , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/classificação , Deficiência Intelectual/diagnóstico , Ossificação Heterotópica/sangue , Ossificação Heterotópica/classificação , Ossificação Heterotópica/diagnóstico , Osteocondrodisplasias/sangue , Osteocondrodisplasias/classificação , Osteocondrodisplasias/diagnóstico , Hormônio Paratireóideo/sangue , Proteína Relacionada ao Hormônio Paratireóideo/sangue , Pseudo-Hipoparatireoidismo/sangue , Dermatopatias Genéticas/sangue , Dermatopatias Genéticas/classificação , Dermatopatias Genéticas/diagnóstico
5.
Am J Med Genet A ; 170(3): 734-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26640227

RESUMO

Autosomal-dominant brachydactyly type E is a congenital limb malformation characterized by small hands and feet as a result of shortened metacarpals and metatarsals. Alterations that predict haploinsufficiency of PTHLH, the gene coding for parathyroid hormone related protein (PTHrP), have been identified as a cause of this disorder in seven families. Here, we report three patients affected with brachydactyly type E, caused by PTHLH mutations expected to result in haploinsufficiency, and discuss our data compared to published reports.


Assuntos
Braquidactilia/diagnóstico , Braquidactilia/genética , Mutação , Proteína Relacionada ao Hormônio Paratireóideo/genética , Adulto , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Criança , Feminino , Loci Gênicos , Humanos , Linhagem , Fenótipo , Sítios de Splice de RNA , Deleção de Sequência
6.
J Pediatr Endocrinol Metab ; 23(8): 827-30, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21073125

RESUMO

Hyperinsulinism-hyperammonemia (HI/HA) syndrome is the second most frequent cause of congenital hyperinsulinism (CHI) and it is characterized by recurrent symptomatic hypoglycemia and persistent hyperammonemia. We describe the familial case of a 2-year-old child and her 32-year-old mother who, having suffered from tonic-clonic seizures since infancy, had both been diagnosed with epilepsy and treated with sodium valproate. Hypoglycemia was identified in the child in routine analysis. Six days after admission, a complete study of hypoglycemia showed test results compatible with hyperinsulinemic hypoglycemia and hyperammonemia. A mutation in the GDH gene (Arg269His) confirmed the diagnosis in both the mother and the child. An important peculiarity of this case is the diagnosis of a 32-year-old woman, previously diagnosed with epilepsy through her daughter's diagnosis at a Pediatric Endocrinology Department and subsequently treated ineffectively with sodium valproate. We conclude that, as hypoglycemia may be subtle, the diagnosis of HI/HA should be considered in children or adults with seizures/epilepsy and hyperammonemia, serum ammonia being a simple screening test for the disease.


Assuntos
Hiperinsulinismo Congênito/genética , Hiperamonemia/genética , Convulsões/genética , Adulto , Anticonvulsivantes/uso terapêutico , Pré-Escolar , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/tratamento farmacológico , Saúde da Família , Feminino , Glutamato Desidrogenase/genética , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/tratamento farmacológico , Mães , Mutação , Convulsões/diagnóstico , Convulsões/tratamento farmacológico , Síndrome , Ácido Valproico/uso terapêutico
7.
J Clin Endocrinol Metab ; 92(6): 2370-3, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17405843

RESUMO

CONTEXT: Several endocrine disorders that share resistance to PTH are grouped under the term pseudohypoparathyroidism (PHP). PHP type I, associated with blunted PTH-induced nephrogenous cAMP formation and phosphate excretion, is subdivided according to the presence or absence of additional endocrine abnormalities, Albright's hereditary osteodystrophy (AHO), and reduced Gsalpha activity caused by GNAS mutations. OBJECTIVE: We sought to identify the molecular defect in four unrelated patients who were thought to have PHP-Ia because of PTH and TSH resistance and mild AHO features. METHODS: Gsalpha activity and mutation analysis, and assessment of GNAS haplotype, methylation, and gene expression were performed for probands and family members. RESULTS: Two patients showed modest decreases in erythrocyte Gsalpha activity. Instead of Gsalpha point mutations, however, all four patients showed methylation defects of the GNAS locus, a feature previously described only for PHP-Ib. Furthermore, one patient with an isolated loss of GNAS exon A/B methylation had the 3-kb STX16 deletion frequently identified in PHP-Ib patients. In all but one of the remaining patients, haplotype analysis excluded large deletions or uniparental disomy as the cause of the observed methylation changes. CONCLUSIONS: Our investigations indicate that an overlap may exist between molecular and clinical features of PHP-Ia and PHP-Ib. No current mechanisms can explain the AHO-like features of our patients, some of which may not be linked to GNAS. Therefore, patients with hormone resistance and AHO-like features in whom coding Gsalpha mutations have been excluded should be evaluated for epigenetic alterations within GNAS.


Assuntos
Displasia Fibrosa Poliostótica/diagnóstico por imagem , Displasia Fibrosa Poliostótica/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Pseudo-Hipoparatireoidismo/diagnóstico por imagem , Pseudo-Hipoparatireoidismo/genética , Adulto , Cromograninas , Epigênese Genética/fisiologia , Feminino , Displasia Fibrosa Poliostótica/fisiopatologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Lactente , Ossos Metacarpais/diagnóstico por imagem , Fenótipo , Pseudo-Hipoparatireoidismo/fisiopatologia , Radiografia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA