Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35268802

RESUMO

Tomato producing and processing industries present undoubted potential for industrial discarded products valorization whether due to the overproduction of fresh tomatoes or to the loss during processing. Although tomato by-products are not yet considered a raw material, several studies have suggested innovative and profitable applications. It is often referred to as "tomato pomace" and is quite rich in a variety of bioactive compounds. Lycopene, vitamin C, ß-carotene, phenolic compounds, and tocopherol are some of the bioactives herein discussed. Tomato by-products are also rich in minerals. Many of these compounds are powerful antioxidants with anti-inflammatory properties besides modulating the immune system. Several researchers have focused on the possible application of natural ingredients, especially those extracted from foods, and their physiological and pharmacological effects. Herein, the effects of processing and further applications of the bioactive compounds present in tomato by-products were carefully reviewed, especially regarding the anti-inflammatory and anti-cancer effects. The aim of this review was thus to highlight the existing opportunities to create profitable and innovative applications for tomato by-products in health context.


Assuntos
Solanum lycopersicum
2.
Oxid Med Cell Longev ; 2016: 8214631, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26664697

RESUMO

Lycopene has been reported as the antioxidant most quickly depleted in skin upon UV irradiation, and thus it might play a protective role. Our goal was to investigate the effects of preexposure to lycopene on UV-B-irradiated skin cells. Cells were exposed for 24 h to 10 M lycopene, and subsequently irradiated and left to recover for another 24 h period. Thereafter, several parameters were analyzed by FCM and RT-PCR: genotoxicity/clastogenicity by assessing the cell cycle distribution; apoptosis by performing the Annexin-V assay and analyzing gene expression of apoptosis biomarkers; and oxidative stress by ROS quantification. Lycopene did not significantly affect the profile of apoptotic, necrotic and viable cells in nonirradiated cells neither showed cytostatic effects. However, irradiated cells previously treated with lycopene showed an increase in both dead and viable subpopulations compared to nonexposed irradiated cells. In irradiated cells, lycopene preexposure resulted in overexpression of BAX gene compared to nonexposed irradiated cells. This was accompanied by a cell cycle delay at S-phase transition and consequent decrease of cells in G0/G1 phase. Thus, lycopene seems to play a corrective role in irradiated cells depending on the level of photodamage. Thus, our findings may have implications for the management of skin cancer.


Assuntos
Apoptose , Carotenoides/farmacologia , Ciclo Celular , Queratinócitos/metabolismo , Raios Ultravioleta/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular , Humanos , Queratinócitos/patologia , Licopeno , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA