RESUMO
Testosterone has been added to hormone replacement therapy to treat sexual dysfunction in postmenopausal women. Whereas estrogen has been associated with vascular protection, the vascular effects of testosterone are contradictory and the effects of its association with estrogen are largely unknown. In this study we determined the effects of testosterone associated with conjugated equine estrogen (CEE) on vascular function using a model of hypertensive postmenopausal female: ovariectomized spontaneously hypertensive rats. Female spontaneously hypertensive rats were divided into sham-operated, ovariectomized (OVX), and OVX treated for 15 days with either CEE alone (OVX+CEE) or associated with testosterone (OVX+CEE+T). Angiotensin II (ANG II)-induced contraction was markedly increased in aortic rings from OVX compared with sham-operated rats. CEE treatment restored ANG-II responses, a beneficial effect abrogated with CEE+T. CEE treatment also increased endothelium-dependent relaxation, which was impaired in OVX rats. This effect was lost by CEE+T. Treatment of aortas with losartan (ANG-II type-1 receptor antagonist) or apocynin (NADPH-oxidase inhibitor) restored the endothelium-dependent relaxation in OVX and CEE+T, establishing an interplay between ANG-II and endothelial dysfunction in OVX and CEE+T. The benefits by CEE were associated with downregulation of NADPH-oxidase subunits mRNA expression and decreased reactive oxygen species generation. The association of testosterone with CEE impairs the benefits of estrogen on OVX-associated endothelial dysfunction and reactive oxygen species generation in rat aorta by a mechanism that involves phosphorylation of the cytosolic NADPH-oxidase subunit p47(phox).
Assuntos
Aorta/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Terapia de Reposição de Estrogênios , Estrogênios Conjugados (USP)/farmacologia , Hipertensão/metabolismo , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Testosterona/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/farmacologia , Feminino , Hipertensão/genética , Hipertensão/fisiopatologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Ratos Endogâmicos SHR , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologiaRESUMO
AIMS: The objective of this study was to analyze the influence of obesity and insulin resistance on tumor development and, in turn, the effect of insulin sensitizing agents. MAIN METHODS: Male offspring of Wistar rats received monosodium glutamate (400mg/kg) (obese) or saline (control) from the second to sixth day after birth. Sixteen-week-old control and obese rats received 5×10(5) Walker-256 tumor cells, subcutaneously injected into the right flank. Some of the obese and control rats received concomitant treatment with metformin (300mg/kg) by gavage. At the 18th week, obesity was characterized. The percentage of rats that developed tumors, the tumor relative weight and the percentage of cachexia incidence were analyzed. The tumor tissue was evaluated histologically by means of hematoxylin and eosin staining. KEY FINDINGS: Metformin did not correct the insulin resistance in obese rats. The tumor development was significantly higher in the obese group, whereas metformin treatment reduced it. After pathological analysis, we observed that the tumor tissues were similar in all groups except for adipocytes, which were found in greater quantity in the obese and metformin-treated obese groups. The area of tumor necrosis was higher in the group treated with metformin when compared with the untreated one. SIGNIFICANCE: Metformin reduced Walker-256 tumor development but not cachexia in obese rats. The reduction occurred independently of the correction of insulin resistance. Metformin increased the area of necrosis in tumor tissues, which may have contributed to the reduced tumor development.